Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling

  • Received Date: November 18, 2013
  • Revised Date: March 24, 2014
  • Published Date: March 24, 2014
  • Applying the direct simulation Monte Carlo (DSMC) method developed for the cold atom system, we explore the possibility of a high-efficiency sympathetic cooling process between 87Rb and 40K without gravitational force in an optical trap. The relation between the pre-cooling of Bosons and the sympathetic cooling efficiency is also studied. We find that the absence of gravitational force is beneficial to the process of sympathetic cooling. Furthermore, an inefficient pre-cooling process will in fact hamper the creation of Fermi degenerate gases. This suggests the advantages of sympathetic cooling in microgravity.
  • Article Text

  • [1] Anderson M et al 1995 Science 269 198 doi: 10.1126/science.269.5221.198
    [2] Bradley C et al 1995 Phys. Rev. Lett. 75 1687
    [3] Davis K et al 1995 Phys. Rev. Lett. 75 3969
    [4] Modugno G et al 2001 Science 294 1320
    [5] Regal C A et al 2003 Nature 424 47
    [6] DeMarco B and Jin D S 1999 Science 285 1703
    [7] Bartenstein M et al 2004 Phys. Rev. Lett. 92 203201
    [8] Mudrich M et al 2002 Phys. Rev. Lett. 88 253001
    [9] van Zoest T et al 2010 Science 328 1540
    [10] Ertmerl W et al 2008 Europhys. News 39 33
    [11] Nyman R A et al 2006 Appl. Phys. B 84 673
    [12] Lemonde P 2009 Eur. Phys. J. Spec. Top. 172 1
    [13] Yu N et al 2006 Appl. Phys. B 84 647
    [14] Bird G A 1963 Phys. Fluids 6 1518
    [15] Bird G A 1998 Molecular Gas Dynamics and the Direct Simulation of Gas Flows 2nd edn (Oxford: Oxford University Press)
    [16] Luiten O J, Reynolds M W and Walraven J T M 1996 Phys. Rev. A 53 381
    [17] Gardiner C W and Zoller P 1997 Phys. Rev. A 55 2902
    [18] Chen Q et al 2010 Energy 35 2448
    [19] Grimm R, Weidemüller M and Ovchinnikov Yu B 2000 Adv. At. Mol. Opt. Phys. 42 95
    [20] Wu H and Foot C J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L321
    [21] Ma Z Y, Thomas A M, Foot C J and Cornish S L 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3533
    [22] Ma Z Y, Foot C J and Cornish S L 2004 J. Phys. B 37 3187
    [23] Wang L, Zhang P, Chen X Z and Ma Z Y 2013 J. Phys. B 46 195302
    [24] Xiong D Z et al 2008 Chin. Phys. Lett. 25 843
    [25] Aubin S et al 2006 Nat. Phys. 2 384
    [26] Best T et al 2009 Phys. Rev. Lett. 102 030408
    [27] Ferlaino F et al 2006 Phys. Rev. A 73 040702
    [28] Wei D et al 2007 Chin. Phys. Lett. 24 679
    [29] Xiong D Z et al 2010 Chin. Opt. Lett. 8 627
    [30] Theis M et al 2004 Phys. Rev. Lett. 93 123001
    [31] Ruth B et al 2013 arXiv:1304.6989 [cond-mat.quant-gas]
    [32] Smirne G et al 2007 Phys. Rev. A 75 020702
    [33] Hung C L et al 2008 Phys. Rev. A 78 011604
    [34] Ivanov V V et al 2011 Phys. Rev. Lett. 106 153201
    [35] Hamilton P et al 2013 arXiv:1308.1935 [physics.atom-ph]
    [36] Vuleti? V et al 1998 Phys. Rev. Lett. 81 5768
  • Related Articles

    [1]LIU Yuan, JIA Ya-Fei, LI Wei-Dong. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential [J]. Chin. Phys. Lett., 2012, 29(4): 040304. doi: 10.1088/0256-307X/29/4/040304
    [2]HAO Ya-Jiang. Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap [J]. Chin. Phys. Lett., 2011, 28(1): 010302. doi: 10.1088/0256-307X/28/1/010302
    [3]YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas [J]. Chin. Phys. Lett., 2010, 27(8): 080305. doi: 10.1088/0256-307X/27/8/080305
    [4]XIONG De-Zhi, CHEN Hai-Xia, WANG Peng-Jun, YU Xu-Dong, GAO Feng, ZHANG Jing. Quantum Degenerate Fermi--Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap [J]. Chin. Phys. Lett., 2008, 25(3): 843-846.
    [5]ZHANG Peng-Fei, ZHANG Hai-Chao, XU Xin-Ping, WANG Yu-Zhu. Monte Carlo Simulation of Cooling Induced by Parametric Resonance [J]. Chin. Phys. Lett., 2008, 25(1): 89-92.
    [6]WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel [J]. Chin. Phys. Lett., 2007, 24(10): 2898-2901.
    [7]MA Yong-Li. Phase Diagram and Phase Separation of a Trapped Interacting Bose--Fermi Gas Mixture [J]. Chin. Phys. Lett., 2004, 21(12): 2355-2358.
    [8]LIU Rang-Su, DONG Ke-Jun, LI Ji-Yon, YU Ai-Bing, ZOU Rui-Ping. Molecular Dynamics Simulation of Microstructure Transitions in a Large-Scale Liquid Metal Al System During Rapid Cooling Processes [J]. Chin. Phys. Lett., 2002, 19(8): 1144-1147.
    [9]LIU Chang-Song, ZHU Zhen-Gang, XIA Jun-Chao, SUN De-Yan. Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation [J]. Chin. Phys. Lett., 2000, 17(1): 34-36.
    [10]CHEN Yixin, NI Guangjiong. DIRAC-BERGMANN FORMALISM OF THE FERMI-BOSE TRANSMUTATION IN (2+1)-DIMENSIONS [J]. Chin. Phys. Lett., 1990, 7(10): 433-436.

Catalog

    Article views (1) PDF downloads (423) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return