The Electronic Structure and Formation Energies of Ni-doped CuAlO2 by Density Functional Theory Calculation

  • Received Date: October 16, 2013
  • Revised Date: February 23, 2014
  • Published Date: February 27, 2014
  • The electronic structure and formation energies of Ni-doped CuAlO2 are calculated by first-principles calculations. Our results show that Ni is good for p-type doping in CuAlO2. When Ni is doped into CuAlO2, it prefers to substitute Al-site. NiAl is a shallow acceptor, while NiCu is a deep acceptor and its formation energy is high. Further electronic structure calculations show that strong hybridization happens between Ni-3d and O-2p states for Ni substituting Al-site, while localized Ni-3d states are found for Ni substituting Cu-site.
  • Article Text

  • [1] Laskowski R et al 2009 Phys. Rev. B 79 165209
    [2] Ueda K et al 2001 J. Appl. Phys. 89 1790
    [3] Duan N et al 2000 Appl. Phys. Lett. 77 1325
    [4] Nagarajan R et al 2001 J. Appl. Phys. 89 8022
    [5] Kawazoe H et al 1997 Nature 389 939
    [6] Granqvist C G 2007 Sol. Energy Mater. Sol. Cells 91 1529
    [7] Thomas G 1997 Nature 389 907
    [8] Godinho K G et al 2009 J. Phys. Chem. C 113 439
    [9] Walsh A et al 2008 Phys. Rev. Lett. 100 167402
    [10] Kohan A F et al 2000 Phys. Rev. B 61 15019
    [11] Zhu Y et al 2012 Chin. Phys. Lett. 29 038103
    [12] Pan J Q et al 2013 Mater. Lett. 96 31
    [13] Lalic M V et al 2003 Solid State Commun. 125 175
    [14] Kizaki H et al 2005 Jpn. J. Appl. Phys. 44 L1187
    [15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
    [16] G Kresse and J Furthmüller 1996 Phys. Rev. B 54 11169
    [17] Perdew J P et al 1992 Phys. Rev. B 46 6671
    [18] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
    [19] Scanlon D O et al 2010 J. Chem. Phys. 132 024707
    [20] Scanlon D O et al 2009 Phys. Rev. B 79 035101
    [21] Raebiger H et al 2007 Phys. Rev. B 76 045209
    [22] Scanlon D O et al 2009 Phys. Rev. B 79 035101
    [23] Sieberer M et al 2007 Phys. Rev. B 75 035203
    [24] Ishiguro T et al 1981 J. Solid State Chem. 40 170
    [25] Ingram B J et al 2001 Phys. Rev. B 64 155114
    [26] Pellicer-Porres J et al 2006 Appl. Phys. Lett. 88 181904
    [27] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
  • Related Articles

    [1]LIU Yuan, JIA Ya-Fei, LI Wei-Dong. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential [J]. Chin. Phys. Lett., 2012, 29(4): 040304. doi: 10.1088/0256-307X/29/4/040304
    [2]HAO Ya-Jiang. Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap [J]. Chin. Phys. Lett., 2011, 28(1): 010302. doi: 10.1088/0256-307X/28/1/010302
    [3]YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas [J]. Chin. Phys. Lett., 2010, 27(8): 080305. doi: 10.1088/0256-307X/27/8/080305
    [4]XIONG De-Zhi, CHEN Hai-Xia, WANG Peng-Jun, YU Xu-Dong, GAO Feng, ZHANG Jing. Quantum Degenerate Fermi--Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap [J]. Chin. Phys. Lett., 2008, 25(3): 843-846.
    [5]ZHANG Peng-Fei, ZHANG Hai-Chao, XU Xin-Ping, WANG Yu-Zhu. Monte Carlo Simulation of Cooling Induced by Parametric Resonance [J]. Chin. Phys. Lett., 2008, 25(1): 89-92.
    [6]WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel [J]. Chin. Phys. Lett., 2007, 24(10): 2898-2901.
    [7]MA Yong-Li. Phase Diagram and Phase Separation of a Trapped Interacting Bose--Fermi Gas Mixture [J]. Chin. Phys. Lett., 2004, 21(12): 2355-2358.
    [8]LIU Rang-Su, DONG Ke-Jun, LI Ji-Yon, YU Ai-Bing, ZOU Rui-Ping. Molecular Dynamics Simulation of Microstructure Transitions in a Large-Scale Liquid Metal Al System During Rapid Cooling Processes [J]. Chin. Phys. Lett., 2002, 19(8): 1144-1147.
    [9]LIU Chang-Song, ZHU Zhen-Gang, XIA Jun-Chao, SUN De-Yan. Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation [J]. Chin. Phys. Lett., 2000, 17(1): 34-36.
    [10]CHEN Yixin, NI Guangjiong. DIRAC-BERGMANN FORMALISM OF THE FERMI-BOSE TRANSMUTATION IN (2+1)-DIMENSIONS [J]. Chin. Phys. Lett., 1990, 7(10): 433-436.

Catalog

    Article views (1) PDF downloads (1221) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return