Analysis and Simulation of Quantum Radar Cross Section

  • Received Date: September 02, 2013
  • Revised Date: February 23, 2014
  • Published Date: February 27, 2014
  • We derive a modified analytical expression of a quantum radar cross section (QRCS). Subsequently, we present a comparison between the QRCS and a classical radar cross section (RCS) and analyze the factors that can affect the intensity of the peak and side lobes. Simulation results on a flat rectangular plate demonstrate that QRCS has a similar structure to that of RCS. The analysis of side-lobe structure can benefit the design of quantum stealth platforms as well as the research on quantum radars.
  • Article Text

  • [1] Lloyd S 2004 Science 306 1330 doi: 10.1126/science.1104149
    [2] Smith J F 2009 Proc. SPIE 7342 73420A
    [3] Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool Publishers)
    [4] Scully M O and Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press)
    [5] Greiner W and Reinhardt J 2008 Quantum Electrodynamics (Berlin: Springer)
    [6] Greiner W and Reinhardt J 1996 Field Quantization (Berlin: Springer)
    [7] Tan S H et al 2008 Phys. Rev. Lett. 101 253601
    [8] Shapiro J H and Lloyd S 2009 New J. Phys. 11 063045
    [9] Lopaeva E D et al 2013 Phys. Rev. Lett. 110 153603
    [10] Guha S and Erkmen B I 2009 Phys. Rev. A 80 052310
    [11] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
    [12] Xiao J J et al 2013 Chin. Phys. Lett. 30 100301
    [13] Skolnik M L 2001 Radar Handbook (New York: McGraw Hill)
    [14] Knott E F, Shaeffer J F and Tuley M T 2004 Radar Cross Section (Herndon: SciTech Publishing)
    [15] Jenn D C 2005 Radar and Laser Cross Section Engineering (Alexander: AIAA Press)
    [16] Lanzagorta M 2010 Proc. SPIE 7727 77270K
  • Related Articles

    [1]LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows [J]. Chin. Phys. Lett., 2012, 29(2): 024701. doi: 10.1088/0256-307X/29/2/024701
    [2]G. A. Hoshoudy. Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field [J]. Chin. Phys. Lett., 2010, 27(12): 125201. doi: 10.1088/0256-307X/27/12/125201
    [3]LIU Jian-Xin, LUO Ji-Sheng. Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow [J]. Chin. Phys. Lett., 2010, 27(8): 084701. doi: 10.1088/0256-307X/27/8/084701
    [4]Syed Tauseef Mohyud-Din, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation [J]. Chin. Phys. Lett., 2010, 27(6): 060201. doi: 10.1088/0256-307X/27/6/060201
    [5]WANG Li-Feng, YE Wen-Hua, LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. Chin. Phys. Lett., 2010, 27(2): 025203. doi: 10.1088/0256-307X/27/2/025203
    [6]WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. Chin. Phys. Lett., 2009, 26(7): 074704. doi: 10.1088/0256-307X/26/7/074704
    [7]WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid [J]. Chin. Phys. Lett., 2009, 26(1): 014701. doi: 10.1088/0256-307X/26/1/014701
    [8]GAO Qing-Di, ZHANG Jin-Hua, QU Hong-Peng. Pressure Driven Magnetohydrodynamics Instabilities in PeakedPressure Profile Reversed Magnetic Shear Plasmas [J]. Chin. Phys. Lett., 2001, 18(6): 790-792.
    [9]REN Shen-Ming, YU Guo-Yang. Reduced Magnetohydrodynamic Equations in Toroidal Geometry [J]. Chin. Phys. Lett., 2001, 18(4): 556-558.
    [10]ZHOU Guo-cheng, CAI Chun-lin, CAO Jin-bin, ZHANG Yang-ting, CHEN Tao, WANG De-ju. Modified Magnetohydrodynamic Model of Magnetic Reconnection [J]. Chin. Phys. Lett., 1999, 16(6): 461-463.

Catalog

    Article views (6) PDF downloads (1971) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return