Incompressible Magnetohydrodynamic Kelvin–Helmholtz Instability with Continuous Profiles

  • Received Date: August 11, 2013
  • Revised Date: February 23, 2014
  • Published Date: February 27, 2014
  • Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found that the frequency of the KHI is not influenced by the magnetic field. The magnetic field strength effect decreases the linear growth of the KHI, while the magnetic field gradient scale length effect increases its linear growth. The KHI can even be completely suppressed when the magnetic field is strong enough. The linear growth rate approaches a maximum when the magnetic field gradient scale length is large enough.
  • Article Text

  • [1] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press)
    [2] Lindl J D et al 2004 Phys. Plasmas 11 339
    [3] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227
    [4] Wang L F et al 2010 Phys. Plasmas 17 122706
    [5] Wang L F, Ye W H, Don W S, Sheng Z M, Li Y J and He X T 2010 Phys. Plasmas 17 122308
    [6] Spolaore N et al 2009 Phys. Rev. Lett. 102 165001
    [7] Boozer A H 2005 Rev. Mod. Phys. 76 1071
    [8] Uberoi C 1984 J. Geophys. Res. 89 5652
    [9] Gamexo V N et al 2003 Science 299 77
    [10] Wang L F, Xue C, Ye W H and Li Y J 2009 Phys. Plasmas 16 112104
    [11] Wang L F, Ye W H and Li Y J 2009 Europhys. Lett. 87 54005
    [12] Wang L F et al 2010 Phys. Plasmas 17 042103
    [13] Ye W H et al 2011 Phys. Plasmas 18 022704
    [14] Miura A 1982 Phys. Rev. Lett. 49 779
    [15] Miura A and Pritchett P L 1982 J. Geophys. Res. 87 7431
    [16] Nakamura T K M and Fujimoto M 2008 Phys. Rev. Lett. 101 165002
    [17] Walker J S, Talmage G, Brown S H and Sondergaard N A 1993 Phys. Fluids A 5 1466
    [18] Wang L F et al 2009 Commun. Theor. Phys. 52 694
    [19] Wang L F et al 2010 Phys. Plasmas 17 122308
    [20] Wang L F et al 2009 Chin. Phys. Lett. 26 074704
  • Related Articles

    [1]LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows [J]. Chin. Phys. Lett., 2012, 29(2): 024701. doi: 10.1088/0256-307X/29/2/024701
    [2]G. A. Hoshoudy. Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field [J]. Chin. Phys. Lett., 2010, 27(12): 125201. doi: 10.1088/0256-307X/27/12/125201
    [3]LIU Jian-Xin, LUO Ji-Sheng. Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow [J]. Chin. Phys. Lett., 2010, 27(8): 084701. doi: 10.1088/0256-307X/27/8/084701
    [4]Syed Tauseef Mohyud-Din, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation [J]. Chin. Phys. Lett., 2010, 27(6): 060201. doi: 10.1088/0256-307X/27/6/060201
    [5]WANG Li-Feng, YE Wen-Hua, LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. Chin. Phys. Lett., 2010, 27(2): 025203. doi: 10.1088/0256-307X/27/2/025203
    [6]WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. Chin. Phys. Lett., 2009, 26(7): 074704. doi: 10.1088/0256-307X/26/7/074704
    [7]WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid [J]. Chin. Phys. Lett., 2009, 26(1): 014701. doi: 10.1088/0256-307X/26/1/014701
    [8]GAO Qing-Di, ZHANG Jin-Hua, QU Hong-Peng. Pressure Driven Magnetohydrodynamics Instabilities in PeakedPressure Profile Reversed Magnetic Shear Plasmas [J]. Chin. Phys. Lett., 2001, 18(6): 790-792.
    [9]REN Shen-Ming, YU Guo-Yang. Reduced Magnetohydrodynamic Equations in Toroidal Geometry [J]. Chin. Phys. Lett., 2001, 18(4): 556-558.
    [10]ZHOU Guo-cheng, CAI Chun-lin, CAO Jin-bin, ZHANG Yang-ting, CHEN Tao, WANG De-ju. Modified Magnetohydrodynamic Model of Magnetic Reconnection [J]. Chin. Phys. Lett., 1999, 16(6): 461-463.

Catalog

    Article views (0) PDF downloads (431) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return