Ultrathin Carbon Nanotubes for Efficient Energy Storage: a First-Principles Study

  • Received Date: September 15, 2013
  • Revised Date: January 19, 2014
  • Published Date: January 31, 2014
  • On the basis of first-principles density functional calculations, the present study sheds theoretical insight on ultrathin carbon nanotube (UCNT) and hydrogenated ultrathin carbon nanotube (HUCNT) for use as potential materials not only for Li-ion battery anode but also for high-capacity hydrogen storage. The highest Li storage capacities in UCNT and HUCNT can be of LiC4 and LiC4H2, respectively, which are higher than that in graphite and LiC6. Binding between Li (Ca) atoms and these materials are found to be enhanced considerably. Each Li (Ca) atom may bind multi-hydrogen molecules, and the adsorption energies are ideally suited for storing hydrogen under ambient conditions, and the predicted weight percentage of molecular hydrogen are in the range of 6.4–12 wt% exceeding the target set by the United States Department of Energy.
  • Article Text

  • [1] Cook T R et al 2010 Chem. Rev. 110 6474 doi: 10.1021/cr100246c
    [2] Lubitz W and Tumas W 2007 Chem. Rev. 107 3900
    [3] Liang M and Zhi L 2009 J. Mater. Chem. 19 5871
    [4] Armand M and Tarascon J M 2008 Nature 451 652
    [5] Dahn J et al 1995 Science 270 590
    [6] Toyoura K et al 2010 J. Phys. Chem. C 114 2375
    [7] Zhang H et al 2011 J. Phys. Chem. C 115 8845
    [8] Zhao J et al 2000 Phys. Rev. Lett. 85 1706
    [9] Chew S Y et al 2009 Carbon 47 2976
    [10] Dillon A C et al 1997 Nature 386 377
    [11] Zhou J et al 2011 J. Phys. Chem. C 115 6136
    [12] Yildirim T and Ciraci S 2005 Phys. Rev. Lett. 94 175501
    [13] Chandrakumar K R S and Ghosh S K 2008 Nano Lett. 8 13
    [14] Wang Y S et al 2011 Chin. Phys. Lett. 28 116801
    [15] Lei H W et al 2012 Chin. Phys. Lett. 29 126801
    [16] Ataca C et al 2008 Appl. Phys. Lett. 93 043123
    [17] Ataca C et al 2009 Phys. Rev. B 79 041406(R)
    [18] Reunchan P and Jhi S H 2011 Appl. Phys. Lett. 98 093103
    [19] Yoon M et al 2008 Phys. Rev. Lett. 100 206806
    [20] Lee H et al 2009 Phys. Rev. B 80 115412
    [21] Sun Q et al 2005 J. Am. Chem. Soc. 127 14582
    [22] Menéndez-Proupin E, Montero-Alejo A and García de la Vega J 2012 Phys. Rev. Lett. 109 105501
    [23] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
    [24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
    [25] Chan S P et al 2001 Phys. Rev. Lett. 87 205502
    [26] Nikitin A et al 2008 Nano Lett. 8 162
    [27] Sun Q et al 2006 J. Am. Chem. Soc. 128 9741
    [28] Liu W et al 2009 J. Phys. Chem. C 113 2028
    [29] Sun C and Searles D J 2012 J. Phys. Chem. C 116 26222
    [30] Henkelman G et al 2006 Comput. Mater. Sci. 36 354
    [31] Niu J et al 1992 Phys. Rev. Lett. 68 2277
  • Related Articles

    [1]TAO Ru-Mao, SI Lei, MA Yan-Xing, ZOU Yong-Chao, ZHOU Pu. Tolerance on Tilt Error for the Incoherent Combination of Fiber Lasers in a Real Environment [J]. Chin. Phys. Lett., 2011, 28(7): 074219. doi: 10.1088/0256-307X/28/7/074219
    [2]MA Shan-Jun, XU Xue-Xiang. A New Approach for Constructing New Coherent-Entangled State Representations [J]. Chin. Phys. Lett., 2010, 27(9): 090304. doi: 10.1088/0256-307X/27/9/090304
    [3]GUO Yu, DENG Hong-Liang. Preparation of Cluster States of Atomic Qubits in Cavity QED [J]. Chin. Phys. Lett., 2010, 27(4): 040309. doi: 10.1088/0256-307X/27/4/040309
    [4]SONG Ke-Hui. Scheme for Generating Cluster States with Charge Qubits in a Cavity [J]. Chin. Phys. Lett., 2009, 26(12): 120302. doi: 10.1088/0256-307X/26/12/120302
    [5]DU Gang, LAI Bo-Hui, YU Ya-Fei, ZHANG Zhi-Ming. Schemes for Generating Cluster States via Cavity Systems [J]. Chin. Phys. Lett., 2009, 26(10): 104201. doi: 10.1088/0256-307X/26/10/104201
    [6]DIAO Da-Sheng, ZHANG Yong-Sheng, ZHOU Xiang-Fa, GUO Guang-Can. Efficient Construction of High-Dimensional Cluster State [J]. Chin. Phys. Lett., 2008, 25(10): 3555-3557.
    [7]ZHOU Yan-Li, YANG Li-Jia, DAI Hong-Yi. Generation of Cluster States in Cavity QED [J]. Chin. Phys. Lett., 2007, 24(12): 3304-3307.
    [8]WU Huai-Zhi, YANG Zhen-Biao, ZHENG Shi-Biao. Effective Scheme for Generating Cluster States in Cavity QED [J]. Chin. Phys. Lett., 2007, 24(11): 3055-3058.
    [9]YANG Wen-Xing. Preparation of Cluster States with Trapped Ions in Thermal Motion [J]. Chin. Phys. Lett., 2007, 24(1): 104-107.
    [10]YANG Wen-Xing, ZHAN Zhi-Ming, LI Jia-Hua. Cluster States from Quantum Logic Gates with Trapped Ions in Thermal Motion [J]. Chin. Phys. Lett., 2006, 23(1): 120-123.

Catalog

    Article views (0) PDF downloads (514) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return