Darboux Transformations via Lie Point Symmetries: KdV Equation
-
Abstract
By localizing the nonlocal symmetries of a nonlinear model to local symmetries of an enlarged system, we find Darboux-B?cklund transformations for both the original and prolonged systems. The idea is explicitly realized for the well-known KdV equation.
Article Text
-
-
-
About This Article
Cite this article:
LI Yu-Qi, CHEN Jun-Chao, CHEN Yong, LOU Sen-Yue. Darboux Transformations via Lie Point Symmetries: KdV Equation[J]. Chin. Phys. Lett., 2014, 31(1): 010201. DOI: 10.1088/0256-307X/31/1/010201
LI Yu-Qi, CHEN Jun-Chao, CHEN Yong, LOU Sen-Yue. Darboux Transformations via Lie Point Symmetries: KdV Equation[J]. Chin. Phys. Lett., 2014, 31(1): 010201. DOI: 10.1088/0256-307X/31/1/010201
|
LI Yu-Qi, CHEN Jun-Chao, CHEN Yong, LOU Sen-Yue. Darboux Transformations via Lie Point Symmetries: KdV Equation[J]. Chin. Phys. Lett., 2014, 31(1): 010201. DOI: 10.1088/0256-307X/31/1/010201
LI Yu-Qi, CHEN Jun-Chao, CHEN Yong, LOU Sen-Yue. Darboux Transformations via Lie Point Symmetries: KdV Equation[J]. Chin. Phys. Lett., 2014, 31(1): 010201. DOI: 10.1088/0256-307X/31/1/010201
|