Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices

  • Received Date: June 08, 2013
  • Revised Date: August 28, 2013
  • Published Date: August 31, 2013
  • We investigate the transport properties through monolayer and bilayer graphene superlattices modulated by an in-plane homogeneous electric field based on the transfer matrix method. It is found that the angular range of the transmission probability through a graphene superlattice can be effectively controlled by the number of barriers and this results in the structure having efficient wavevector filters. As the number of barriers increases, this range shrinks. It is also shown that the conductance of the systems has an oscillatory behavior with respect to the barrier height and it decreases with the increasing number of barriers.
  • Article Text

  • [1] Novoselov K S et al 2004 Science 306 666
    Novoselov K S et al 2005 Nature 438 197 doi: 10.1126/science.1102896
    [2] Novoselov K S and Geim A K 2007 Nat. Mater. 6 183
    [3] Katsnelson M I et al 2006 Nat. Phys. 2 620
    [4] Barbier M et al 2008 Phys. Rev. B 77 115446
    [5] Zhang Y et al 2005 Nature 438 201
    [6] Wright A R et al 2009 Appl. Phys. Lett. 95 072101
    [7] Mikhaliov A and Ziegler K 2008 J. Phys.: Condens. Matter 20 384204
    [8] Novoselov K S et al 2006 Nat. Phys. 2 177
    [9] Tworzydlo J et al 2006 Phys. Rev. Lett. 96 246802
    [10] Katsnelson M I 2006 Eur. Phys. J. B 51 157
    [11] Hu S J et al 2012 Chin. Phys. Lett. 29 057201
    [12] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
    [13] Novoselov K S et al 2006 Nat. Phys. 2 177
    [14] McCann E and Falko V I 2006 Phys. Rev. Lett. 96 086805
    [15] de Andres P L et al 2008 Phys. Rev. B 77 045403
    [16] Masir M R et al 2008 Appl. Phys. Lett. 93 242103
    [17] Raoux A et al 2010 Phys. Rev. B 81 073407
    [18] Concha A and Tesanovic Z 2010 Phys. Rev. B 82 033413
    [19] Chen X and Tao J W 2009 Appl. Phys. Lett. 94 262102
    [20] Bai C et al 2011 Appl. Phys. A 103 427
    [21] Schomerus H 2007 Phys. Rev. B 76 045433
    [22] Zhang G P et al 2011 Phys. Lett. A 375 1043
    [23] Zhang G P et al 2011 Chem. Phys. Lett. 516 225
    [24] Niu Z P et al 2008 Eur. Phys. J. B 66 245
    [25] Ke Q et al 2011 Solid State Commun. 151 1131
    [26] Faizabadi E et al 2012 Eur. Phys. J. B 85 30073
    [27] Esmailpour A et al 2009 Phys. Rev. B 79 165412
    [28] Bai C and Zhang X 2007 Phys. Rev. B 76 075430
    [29] Sh Q et al 2008 J. Phys.: Condens. Matter 20 485210
    [30] Mukhopadhyay S et al 2010 Phys. Status Solidi B 247 342
    [31] Titov M 2007 Europhys. Lett. 79 17004
    [32] Buttiker M 1986 Phys. Rev. Lett. 57 1761
  • Related Articles

    [1]FAN Zhi-Qiang, ZHANG Zhen-Hua, QIU Ming, DENG Xiao-Qing, TANG Gui-Ping. Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances [J]. Chin. Phys. Lett., 2012, 29(7): 077305. doi: 10.1088/0256-307X/29/7/077305
    [2]REN Hua, LIANG Wei, ZHAO Peng, LIU De-Sheng. Low Bias Negative Differential Resistance with Large Peak-to-Valley Ratio in a BDC60 Junction [J]. Chin. Phys. Lett., 2012, 29(7): 077301. doi: 10.1088/0256-307X/29/7/077301
    [3]FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot [J]. Chin. Phys. Lett., 2012, 29(3): 037303. doi: 10.1088/0256-307X/29/3/037303
    [4]YIN Hai-Tao, LÜ Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer [J]. Chin. Phys. Lett., 2009, 26(4): 047302. doi: 10.1088/0256-307X/26/4/047302
    [5]YANG Yuan, LI Gui-Ping, GAO Yong, LIU Jing. Characteristics Analysis of Vertical Double Gate Strained Channel Heterostructure Metal-Oxide-Semiconductor-Field-Effect-Transistor [J]. Chin. Phys. Lett., 2009, 26(2): 027801. doi: 10.1088/0256-307X/26/2/027801
    [6]CHENG Jian-Bing, ZHANG Bo, DUAN Bao-Xing, LI Zhao-Ji. A Novel Super-Junction Lateral Double-Diffused Metal--Oxide--Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer [J]. Chin. Phys. Lett., 2008, 25(1): 262-265.
    [7]YANG Fu-Bin, WU Shao-Quan, SUN Wei-Li. Spin-Polarized Transport through the T-Shaped Double Quantum Dots with Fano--Kondo Interaction [J]. Chin. Phys. Lett., 2007, 24(7): 2056-2059.
    [8]HE Jin, BIAN Wei, TAO Ya-Dong, LIU Feng, SONG Yan, ZHANG Xing. Numerical Study on a Lateral Double-Gate Tunnelling Field Effect Transistor [J]. Chin. Phys. Lett., 2006, 23(12): 3373-3375.
    [9]LI Xian-Jie, YAN Fa-Wang, ZHANG Wen-Jun, ZHANG Rong-Gui, LIU Wei-Ji, AO Jin-Ping, ZENG Qing-Ming, LIU Shi-Yong, LIANG Chun-Guang. Field Effect Transistor with Self-Organized In0.15Ga0.85As/GaAs Quantum Wires as a Channel Grown on (553)B GaAs Substrates [J]. Chin. Phys. Lett., 2001, 18(8): 1147-1149.
    [10]LIU Bo, ZHANG Guang-cai, DAI Jian-hua, ZHANG Hong-jun. Eigenvalues and Eigenfunctions of a Stadium-Shaped Quantum Dot Subjected to a Perpendicular Magnetic Field [J]. Chin. Phys. Lett., 1998, 15(9): 628-630.

Catalog

    Article views (0) PDF downloads (484) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return