Effects of the Bridging Bond on Electronic Transport in a D-B-A Device
-
Abstract
By using density functional theory combined with a nonequilibrium Green's functions approach, the electronic transport properties of different bridges connecting benzene-based heterojunction molecular devices are investigated. We focus on the effects of the bridging bond polarity and its bond length. Our results show that the polar bond plays a significant role in determining the overall conductance of the molecular devices. The effects of a current plateau and the negative differential resistance can be observed. These simulation results suggest that the proposed models may be helpful for designing practical molecular devices.
Article Text
-
-
-
About This Article
Cite this article:
LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 087201. DOI: 10.1088/0256-307X/30/8/087201
LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 087201. DOI: 10.1088/0256-307X/30/8/087201
|
LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 087201. DOI: 10.1088/0256-307X/30/8/087201
LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 087201. DOI: 10.1088/0256-307X/30/8/087201
|