The ?-Dressing Method for the Sasa–Satsuma Equation with Self-Consistent Sources

  • Received Date: May 14, 2013
  • Revised Date: July 28, 2013
  • Published Date: July 31, 2013
  • The dressing method, based on the local 3×3 matrix ?-problem, is extended to study the Sasa–Satsuma equation with self-consistent sources. The explicit solutions, including one-soliton and two-soliton solutions, are given by virtue of the properties of the Cauchy matrix.
  • Article Text

  • [1] Sasa N and Satsuma J 1991 J. Phys. Soc. Jpn. 60 409 doi: 10.1143/JPSJ.60.409
    [2] Trulsen K and Dysthe K B 1996 Wave Motion 24 281
    [3] Sedletskii Y V 2003 J. Exp. Theor. Phys. 97 180
    [4] Slunyaev A V 2005 J. Exp. Theor. Phys. 101 926
    [5] Potasek M J 1991 Phys. Lett. A 154 449
    [6] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon)
    [7] Agrawal G P 1989 Nonlinear Fiber Optics (San Diego: Academic)
    [8] Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208
    [9] Kaup D J and Yang J K 2009 Inverse Probl. 25 105010
    [10] Yang J K and Kaup D J 2009 J. Math. Phys. 50 023504
    [11] Sasa N and Satsuma J 1993 J. Phys. Soc. Jpn. 62 1153
    [12] Ohta Y 2010 AIP Conf. Proc. 1212 114
    [13] Ghosh S, Kundu A and Nandy S 1999 J. Math. Phys. 40 1993
    [14] Leon J and Latifi A 1990 J. Phys. A: Math. Gen. 23 1385
    [15] Mel'nikov V K 1992 Inverse Probl. 8 133
    [16] Doktorov E V and Vlasov R A 1983 Opt. Acta 30 223
    [17] Claude C, Latifi A and Leon J 1991 J. Math. Phys. 32 3321
    [18] Mel'nikov V K 1989 Commun. Math. Phys. 126 201
    [19] Mel'nikov V K 1990 Inverse Probl. 6 233
    [20] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
    [21] Zeng Y B, Ma W X and Shao Y J 2001 J. Math. Phys. 42 2113
    [22] Hu X B 1996 Chaos Solitons Fractals 7 211
    [23] Zhang D J 2002 J. Phys. Soc. Jpn. 71 2649
    [24] Wang H Y, Hu X B and Tam H W 2007 J. Phys. Soc. Jpn. 76 024007
    [25] Zhu J Y and Geng X G 2013 J. Phys. A: Math. Theor. 46 035204
    [26] Zhu J Y and Geng X G 2013 arXiv:1304.4096 [nlin.SI]
    [27] Manakov S V 1973 Zh. Eksp. Teor. Fiz 65 1392
  • Related Articles

    [1]ZHANG Li, WEI Bing-Tao, FANG Jun. Leptonic Origin of TeV Gamma-Ray Emission from Crab Nebula [J]. Chin. Phys. Lett., 2007, 24(10): 3009-3012.
    [2]JIANG Ze-Jun, ZHANG Li. Effect of Gamma-Ray Beaming on the Fluxes of Gamma-Ray Pulsars [J]. Chin. Phys. Lett., 2005, 22(5): 1289-1292.
    [3]ZHANG Li, JIANG Ze-Jun. Fluxes and Death Lines of Gamma-Ray Pulsars [J]. Chin. Phys. Lett., 2003, 20(12): 2273-2276.
    [4]ZHANG Xiong, ZHAO Gang, CHENG Guang-Sheng, ZHANG Li. Gamma-Ray and Multiwaveband Emission from Gamma-Ray-Loud BL Lacertae Objects [J]. Chin. Phys. Lett., 2003, 20(7): 1183-1186.
    [5]ZHANG Li, WU Jie, JIANG Ze-Jun, MEI Dong-Cheng. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-RayEmission [J]. Chin. Phys. Lett., 2003, 20(3): 433-435.
    [6]HUANG Yong-feng, DAI Zi-gao, LU Tan. Overall Evolution of Realistic Gamma-Ray Burst Remnant and Its Afterglow [J]. Chin. Phys. Lett., 1999, 16(10): 775-777.
    [7]ZHANG Shu, LI Ti-pei, WU Mei. A Possible Glitch of Gamma-Ray Pulsar Geminga? [J]. Chin. Phys. Lett., 1998, 15(1): 74-75.
    [8]LI Ti-pei, WU Mei. Gamma-Ray Bursts from Discharges in Plasmas [J]. Chin. Phys. Lett., 1997, 14(7): 557-560.
    [9]CHE Hai-hong, LI Ti-pei, YANG Yu-xuan. Two Different Burster Spatial Distributions of Gamma-Ray Bursts ? [J]. Chin. Phys. Lett., 1996, 13(12): 957-960.
    [10]LI Ti-pei. Property Changes of Gamma-Ray Bursts [J]. Chin. Phys. Lett., 1996, 13(8): 637-640.

Catalog

    Article views (0) PDF downloads (634) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return