The ?-Dressing Method for the Sasa–Satsuma Equation with Self-Consistent Sources
-
Abstract
The dressing method, based on the local 3×3 matrix ?-problem, is extended to study the Sasa–Satsuma equation with self-consistent sources. The explicit solutions, including one-soliton and two-soliton solutions, are given by virtue of the properties of the Cauchy matrix. -
References
[1] Sasa N and Satsuma J 1991 J. Phys. Soc. Jpn. 60 409 doi: 10.1143/JPSJ.60.409 [2] Trulsen K and Dysthe K B 1996 Wave Motion 24 281 [3] Sedletskii Y V 2003 J. Exp. Theor. Phys. 97 180 [4] Slunyaev A V 2005 J. Exp. Theor. Phys. 101 926 [5] Potasek M J 1991 Phys. Lett. A 154 449 [6] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon) [7] Agrawal G P 1989 Nonlinear Fiber Optics (San Diego: Academic) [8] Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208 [9] Kaup D J and Yang J K 2009 Inverse Probl. 25 105010 [10] Yang J K and Kaup D J 2009 J. Math. Phys. 50 023504 [11] Sasa N and Satsuma J 1993 J. Phys. Soc. Jpn. 62 1153 [12] Ohta Y 2010 AIP Conf. Proc. 1212 114 [13] Ghosh S, Kundu A and Nandy S 1999 J. Math. Phys. 40 1993 [14] Leon J and Latifi A 1990 J. Phys. A: Math. Gen. 23 1385 [15] Mel'nikov V K 1992 Inverse Probl. 8 133 [16] Doktorov E V and Vlasov R A 1983 Opt. Acta 30 223 [17] Claude C, Latifi A and Leon J 1991 J. Math. Phys. 32 3321 [18] Mel'nikov V K 1989 Commun. Math. Phys. 126 201 [19] Mel'nikov V K 1990 Inverse Probl. 6 233 [20] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453 [21] Zeng Y B, Ma W X and Shao Y J 2001 J. Math. Phys. 42 2113 [22] Hu X B 1996 Chaos Solitons Fractals 7 211 [23] Zhang D J 2002 J. Phys. Soc. Jpn. 71 2649 [24] Wang H Y, Hu X B and Tam H W 2007 J. Phys. Soc. Jpn. 76 024007 [25] Zhu J Y and Geng X G 2013 J. Phys. A: Math. Theor. 46 035204 [26] Zhu J Y and Geng X G 2013 arXiv:1304.4096 [nlin.SI] [27] Manakov S V 1973 Zh. Eksp. Teor. Fiz 65 1392 -
Related Articles
[1] ZHANG Li, WEI Bing-Tao, FANG Jun. Leptonic Origin of TeV Gamma-Ray Emission from Crab Nebula [J]. Chin. Phys. Lett., 2007, 24(10): 3009-3012. [2] JIANG Ze-Jun, ZHANG Li. Effect of Gamma-Ray Beaming on the Fluxes of Gamma-Ray Pulsars [J]. Chin. Phys. Lett., 2005, 22(5): 1289-1292. [3] ZHANG Li, JIANG Ze-Jun. Fluxes and Death Lines of Gamma-Ray Pulsars [J]. Chin. Phys. Lett., 2003, 20(12): 2273-2276. [4] ZHANG Xiong, ZHAO Gang, CHENG Guang-Sheng, ZHANG Li. Gamma-Ray and Multiwaveband Emission from Gamma-Ray-Loud BL Lacertae Objects [J]. Chin. Phys. Lett., 2003, 20(7): 1183-1186. [5] ZHANG Li, WU Jie, JIANG Ze-Jun, MEI Dong-Cheng. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-RayEmission [J]. Chin. Phys. Lett., 2003, 20(3): 433-435. [6] HUANG Yong-feng, DAI Zi-gao, LU Tan. Overall Evolution of Realistic Gamma-Ray Burst Remnant and Its Afterglow [J]. Chin. Phys. Lett., 1999, 16(10): 775-777. [7] ZHANG Shu, LI Ti-pei, WU Mei. A Possible Glitch of Gamma-Ray Pulsar Geminga? [J]. Chin. Phys. Lett., 1998, 15(1): 74-75. [8] LI Ti-pei, WU Mei. Gamma-Ray Bursts from Discharges in Plasmas [J]. Chin. Phys. Lett., 1997, 14(7): 557-560. [9] CHE Hai-hong, LI Ti-pei, YANG Yu-xuan. Two Different Burster Spatial Distributions of Gamma-Ray Bursts ? [J]. Chin. Phys. Lett., 1996, 13(12): 957-960. [10] LI Ti-pei. Property Changes of Gamma-Ray Bursts [J]. Chin. Phys. Lett., 1996, 13(8): 637-640.