The CV and G/ωV Electrical Characteristics of 60Co γ-Ray Irradiated Al/Si3N4/p-Si (MIS) Structures

  • Received Date: March 04, 2013
  • Revised Date: June 24, 2013
  • Published Date: June 30, 2013
  • The influence of 60Co (γ-ray) irradiation on the electrical characteristics of Al/Si3N4/p-Si (MIS) structures is investigated using capacitance-voltage (CV) and conductance-voltage (G/ωV) measurements. The MIS structures are exposed to a 60Co γ radiation source at a dose of 0.7 kGy/h, with a total dose range of 0–100 kGy. The CV and G/ωV properties are measured before and after 60Co γ-ray irradiation at 500 kHz and room temperature. It is found that the capacitance and conductance values decrease with the increase in the total dose due to the irradiation-induced defects at the interface. The results also indicate that γ radiation causes an increase in the barrier height ?B, Fermi energy EF and depletion layer width WD. The interface state density (Nss), using the Hill–Coleman method and dependent on radiation dose, is determined from the CV and G/ωV measurements and decreases with an increase in the radiation dose. The decrease in the interface states can be attributed to the decrease in the recombination centers and the passivation of the Si surface due to the deposition insulator layer (Si3N4). In addition, it is clear that the acceptor concentration NA decreases with increasing radiation dose. The profile of series resistance Rs for various radiation doses is obtained from forward and reverse-biased CV and G/ωV measurements, and its values decrease with increasing radiation dose, while it increases with increasing voltage in the accumulation region
  • Article Text

  • [1] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley)
    [2] Rhoderick E H and Williams R H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press)
    [3] Cowley A M and Sze S M 1965 J. Appl. Phys. 36 3212
    [4] Card H C and Rhoderick E H 1971 J. Phys. D 4 1589
    [5] Singh A et al 1990 J. Appl. Phys. 68 3475
    [6] Chattopadhyay P and Daw A N 1986 Solid-State Electron. 29 555
    [7] Alt?ndal ? Karadeniz S, Tu?luo?lu N and Tataro?lu A 2003 Solid-State Electron. 47 1847
    [8] Zeyrek S et al 2006 Appl. Surf. Sci. 252 2999
    [9] Lee B H et al 2000 Appl. Phys. Lett. 76 1926
    [10] Reed J et al 1994 J. Appl. Phys. 75 1826
    [11] Yüzer H et al 2000 Spectrochim. Acta Part B 55 991
    [12] Zainninger K H and HolmesSiedle A G 1967 RCA Rev. 208 39
    [13] Winokur P S et al 1976 IEEE Trans. Nucl. Sci. 23 1580
    [14] Da Silva Jr. E F et al 1987 IEEE Trans. Nucl. Sci. 34 1190
    [15] Ma T P and Dressendorfer P V 1989 Ionizing Radiation Effect in MOS Devices and Circuits (New York: Wiley)
    [16] Ma T P 1989 Semicond. Sci. Technol. 4 1061
    [17] Oldham T R 1999 Ionizing Radiation Effects in MOS Oxides (Singapore: World Scientific
    [18] Chin M R and Ma T P 1983 Appl. Phys. Lett. 42 883
    [19] Feteha M Y et al 2002 Renewable Energy 26 113
    [20] Kaschieva S et al 2004 Vacuum 76 307
    [21] UmanaMembreno G A et al 2003 IEEE Trans. Electron Devicesces 50 2326
    [22] Tüzün ? Alt?ndal ? and Oktik ? 2008 Renewable Energy 33 286
    [23] Kinoshita A et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 541 213
    [24] Tataro?lu A and Alt?ndal ? 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 252 257
    [25] Naruke K et al 1983 IEEE Trans. Nucl. Sci. 30 4054
    [26] Chrisey D B and Hubler G K 1994 Pulsed Laser Deposition of Thin Films (New York: Wiley)
    [27] Auciello O and Engemann J 1993 Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques Fundamentals and Devices (Kluwer: Dordrech)
    [28] Tataro?lu A and Alt?ndal ? 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 1588
    [29] D?kme I et al 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 791
    [30] Ta?c?o?lu I et al 2010 Radiat. Phys. Chem. 79 457
    [31] Tataro?lu A et al 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 254 273
    [32] Karata? ? Türüt A and Alt?ndal ? 2009 Radiat. Phys. Chem. 78 130
    [33] Sztkowski J and Sieranski K 1992 Solid-State Electron. 35 1013
    [34] Cova P et al 1997 J. Appl. Phys. 82 5217
    [35] Singh A 1985 Solid-State Electron. 28 223
    [36] Nicollian E H and Brews J R 1982 MOS Physics and Technology (New York: John Willey & Sons)
    [37] Tataro?lu A et al 2003 Microelectron. J. 34 1043
    [38] Sah C 1991 Fundamental of Solid State Electronics (Singapore: World Scientific)
    [39] Karata? ? Türüt A and Alt?ndal ? 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 555 260
    [40] Kinoshita A et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 541 213
    [41] De Vasconcelos E A and Da Silva Jr E F 1997 Semicond. Sci. Technol. 12 1032
    [42] Akkal B et al 2000 Vacuum 57 219
    [43] Nicollian E H and Goetzberger A 1965 Appl. Phys. Lett. 7 216
    [44] Nicollian E H and Goetzberger A 1967 Bell Syst. Tech. J. 46 1055
    [45] Hung K and Cheng Y C 1987 J. Appl. Phys. 62 4204
    [46] Norde H 1979 J. Appl. Phys. 50 5052
    [47] Hill W A and Coleman C C 1980 Solid-State Electron. 23 987
  • Related Articles

    [1]WANG Jia, YE Tao, SUN Wei-Li, Yukinobu Watanabe, Kazuyuki Ogata. Inclusive Proton Energy Spectra of the Deuteron Induced Reaction [J]. Chin. Phys. Lett., 2011, 28(11): 112401. doi: 10.1088/0256-307X/28/11/112401
    [2]Mukhtar Ahmed Rana, Gul Sher, Shahid Manzoor, M. I. Shahzad. Fission of Weakly Prolate 119Sn and Weakly Oblate 209Bi Nuclei Induced by 500 and 672 MeV Negative Pions [J]. Chin. Phys. Lett., 2011, 28(9): 092501. doi: 10.1088/0256-307X/28/9/092501
    [3]G. Sher, Mukhtar A. Rana, S. Manzoor, M. I. Shahzad. Negative Pion Induced Fission with Heavy Target Nuclei [J]. Chin. Phys. Lett., 2011, 28(1): 012501. doi: 10.1088/0256-307X/28/1/012501
    [4]XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves [J]. Chin. Phys. Lett., 2009, 26(11): 119401. doi: 10.1088/0256-307X/26/11/119401
    [5]Zafar Yasin. Dependence of Nucleon and Pion-Induced Fission Cross Sections on the Level Density Parameter in the Cascade-Exciton Model [J]. Chin. Phys. Lett., 2009, 26(8): 082505. doi: 10.1088/0256-307X/26/8/082505
    [6]S. Soheyli. Energy and Mass Distributions of Induced-Fission of 197Au Nucleus by 29MeV Protons [J]. Chin. Phys. Lett., 2007, 24(6): 1525-1528.
    [7]WANG Kun, MA Yu-Gang, WEI Yi-Bin, CAI Xiang-Zhou, CHEN Jin-Gen, FANG De-Qing, GUO Wei, MA Guo-Liang, SHEN Wen-Qing, TIAN Wen-Dong, ZHONG Chen, ZHOU Xing-Fei. Isoscaling of the Fission Fragments with Langevin Equation [J]. Chin. Phys. Lett., 2005, 22(1): 53-56.
    [8]YANG Chun-Bin. Parton Distributions of Pions in the Valon Model [J]. Chin. Phys. Lett., 2003, 20(6): 821-824.
    [9]LIU Zuhua. Fission Before K Statistical Equilibration [J]. Chin. Phys. Lett., 1995, 12(11): 653-656.
    [10]PAN Zhengying, YUAN Zhushu, YANG Fuchia. FISSION-LIKE ESTIMATE FOR THE EMISSION OF HEAVY CLUSTERS [J]. Chin. Phys. Lett., 1986, 3(4): 145-148.

Catalog

    Article views (0) PDF downloads (510) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return