Electron Transport through a Silicon Atomic Chain

  • The electron transport properties of a silicon atomic chain sandwiched between Au (100) leads are investigated by using the density functional theory combined with the non-equilibrium Green's function method. The breaking process of Au-Si4-Au nanoscale junctions is simulated. The conductance and the corresponding cohesion energy as a function of distance dz are obtained. With the increase of distance, the conductance decreases. When dz=18.098 ?, there is a minimum value of cohesion energy. The nanoscale structure of junctions is most stable, and the equilibrium conductance is 1.71G0 (G0=2e2/h) at this time. The IV curves of junctions at equilibrium position show linear characteristics.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return