Electron Transport through a Silicon Atomic Chain
-
Abstract
The electron transport properties of a silicon atomic chain sandwiched between Au (100) leads are investigated by using the density functional theory combined with the non-equilibrium Green's function method. The breaking process of Au-Si4-Au nanoscale junctions is simulated. The conductance and the corresponding cohesion energy as a function of distance dz are obtained. With the increase of distance, the conductance decreases. When dz=18.098 ?, there is a minimum value of cohesion energy. The nanoscale structure of junctions is most stable, and the equilibrium conductance is 1.71G0 (G0=2e2/h) at this time. The I–V curves of junctions at equilibrium position show linear characteristics.
Article Text
-
-
-
About This Article
Cite this article:
LIU Fu-Ti, CHENG Yan, CHENG Xiao-Hong, YANG Fu-Bin, CHEN Xiang-Rong. Electron Transport through a Silicon Atomic Chain[J]. Chin. Phys. Lett., 2013, 30(6): 067302. DOI: 10.1088/0256-307X/30/6/067302
LIU Fu-Ti, CHENG Yan, CHENG Xiao-Hong, YANG Fu-Bin, CHEN Xiang-Rong. Electron Transport through a Silicon Atomic Chain[J]. Chin. Phys. Lett., 2013, 30(6): 067302. DOI: 10.1088/0256-307X/30/6/067302
|
LIU Fu-Ti, CHENG Yan, CHENG Xiao-Hong, YANG Fu-Bin, CHEN Xiang-Rong. Electron Transport through a Silicon Atomic Chain[J]. Chin. Phys. Lett., 2013, 30(6): 067302. DOI: 10.1088/0256-307X/30/6/067302
LIU Fu-Ti, CHENG Yan, CHENG Xiao-Hong, YANG Fu-Bin, CHEN Xiang-Rong. Electron Transport through a Silicon Atomic Chain[J]. Chin. Phys. Lett., 2013, 30(6): 067302. DOI: 10.1088/0256-307X/30/6/067302
|