Dynamic Behaviors of Hydrogen in Martensitic T91 Steel Evaluated by Using the Internal Friction Method

  • Received Date: December 16, 2012
  • Revised Date: March 28, 2013
  • Published Date: March 31, 2013
  • Hydrogen atoms are electrochemically introduced into commercial martensitic T91 steel, and the hydrogen dynamic behaviors are investigated by internal friction (IF) technology. A complex spectrum with multicomponent peaks is detected in the hydrogen-charged T91 steel in the temperature range of 135–290 K. Analysis of peak configuration reveals that the multicomponent peaks consist of one relaxational peak and two non-relaxational peaks. The mechanism of the wide relaxational component is ascribed to the combination of a hydrogen Snoek-like diffusion process and the interaction of hydrogen with movable dislocations, while the two non-relaxational peaks are preliminarily suggested to be caused by some kinds of transient processes related with hydrogen redistribution and outgassing. The binding energy of hydrogen to dislocation is determined to be about 0.19 eV.
  • Article Text

  • [1] Coen G, Boch J V D and Almazouzi A 2010 J. Nucl. Mater. 398 122 doi: 10.1016/j.jnucmat.2009.10.021
    [2] Ampornrat P and Was G S 2007 J. Nucl. Mater. 371 1
    [3] Grosse M, Dai Y and Petegem S V 2006 J. Nucl. Mater. 356 112
    [4] Fischer U, Simakov S P and Wilson P P H 2004 J. Nucl. Mater. 329-333 228
    [5] Monasterio P R, Lau T T and Yip S 2009 Phys. Rev. Lett. 103 085501
    [6] Lambrecht M and Malerba L 2011 Acta Mater. 59 6547
    [7] Marchetti a L, Herms a E and Laghoutaris A P 2011 Int. J. Hydrogen Energy 36 15880
    [8] Nowick A S and Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York: Academic)
    [9] Blanter M S, Golovin I S and Neuh?user H 2007 Internal Friction in Metallic Materials (Berlin: Springer)
    [10] Jagodzinski Y, Tarasenko A and Smuk S 1999 J. Nucl. Mater. 275 47
    [11] Pu?kár A 2001 Internal Friction of Materials (Cambridge: Cambridge International Science Publishing)
    [12] T?htinen S, Jagodzinski Y, Tarasenko O et al 2000 J. Nucl. Mater. 283-287 255
    [13] Gavriljuk V G, H ?nninen H, Smouk S Y et al 1996 Metall. Mater. Trans. A 27 1815
    [14] Aaltonen P, Jagodzinski Y, Tarasenko A et al 1998 Philos. Mag. A 78 979
    [15] Yuan L X and Q F Fang 1998 Acta Metall. Sin. 34 1016
    [16] Wang X P and Fang Q F 2002 Phys. Rev. B 65 064304
    [17] Yagodzinsky Y, Andronova E, Ivanchenko M et al 2009 Mater. Sci. Eng. A 521-522 159
    [18] Schoeck G 1982 Scr. Metall. 16 233
    [19] Teter D E, Robertson I M, Birnbaum H K 2001 Acta Mater. 49 4313
    [20] Ardell A J 1985 Metall. Mater. Trans. A 16 2131
  • Related Articles

    [1]WANG Cheng-Bing, SHI Jing, GENG Zhong-Rong, ZHANG Jun-Yan. Role of Surface Hydrogen Bonds in Determining the Friction Behaviors of Hydrogenated Diamond-like Carbon Films [J]. Chin. Phys. Lett., 2012, 29(5): 056201. doi: 10.1088/0256-307X/29/5/056201
    [2]LI Ping-Yun, ZHANG Xi-Yan, NI Hai-Tao, CAO Zhen-Hua, MENG Xiang-Kang. Deformation Induced Internal Friction Peaks in Nanocrystalline Nickel [J]. Chin. Phys. Lett., 2012, 29(2): 026201. doi: 10.1088/0256-307X/29/2/026201
    [3]LIU Yin, QIN Xiao-Ying, WANG Li, ZHANG Ming-Xu. Structural Evolution of Nanostructured γ-Ni-28Fe Alloy Investigated by Using the Internal Friction Technique [J]. Chin. Phys. Lett., 2003, 20(1): 99-101.
    [4]CHEN Gang, ZHU Zhen-gang, SHUI Jia-peng. Internal Friction in Bi-material Specimens [J]. Chin. Phys. Lett., 1999, 16(8): 589-590.
    [5]HAN Fu-sheng, ZHU Zhen-gang, WANG Shan-ying, LIU Chang-song. Nonlinear Internal Friction Character of Foamed Aluminum [J]. Chin. Phys. Lett., 1998, 15(1): 52-53.
    [6]XIE Qian, CHEN Nanxian. Determination of Hydrogen Activation Energy Spectrum in Amorphous Solids from Internal Frictions [J]. Chin. Phys. Lett., 1995, 12(9): 553-556.
    [7]TAN Qi. Elastic Modulus Effect Related with Nonlinear Internal Friction [J]. Chin. Phys. Lett., 1992, 9(1): 26-29.
    [8]LI Xiaoguang, HE Yizhen. INTERNAL FRICTION STUDY ON STRUCTURAL RELAXATION OF METALLIC GLASSES [J]. Chin. Phys. Lett., 1988, 5(6): 273-276.
    [9]CHENG Bolin, GE Tingsui (T.S.Ke). ON THE BAMBOO BOUNDARY INTERNAL FRICTION PEAK IN 99.9999 ALUMINIUM [J]. Chin. Phys. Lett., 1988, 5(2): 81-84.
    [10]LI Guang-yi, PAN Zheng-liang, WANG Xiao-wei, XIAO Jin-quan. INTERNAL FRICTION, SHEAR MODULUS AND MAGNETIC SUSCEPTIBILITY OF LANTHANUM [J]. Chin. Phys. Lett., 1985, 2(11): 521-524.

Catalog

    Article views (1) PDF downloads (542) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return