Role of the Permanent Dipole Moment in Coulomb Explosion
-
Abstract
By numerically solving the non-Born–Oppenheimer time-dependent Schr?dinger equation in a few-cycle chirped laser field (5-fs, 800-nm), the effect of the permanent dipole moment on the Coulomb explosion is studied by the kinetic-energy-release spectra with the "virtual detector" method. The results indicate that with the effect of the permanent dipole moment, different multiphoton processes for heteronuclear and homonuclear diatomic molecular ions may take place when the wave packets transit from the ground state (1sσg) to the first excited state (2pσu), and then move along the excited potential curve, and finally charge-resonant enhanced ionization occurs at critical internuclear distance. As a result, despite the similar ionization probabilities for these two systems at higher vibrational level with larger chirp parameter β, the structure of the Coulomb explosion spectrum for the former is prominently different from that for the latter.
Article Text
-
-
-
About This Article
Cite this article:
ZHANG Cai-Ping, MIAO Xiang-Yang. Role of the Permanent Dipole Moment in Coulomb Explosion[J]. Chin. Phys. Lett., 2013, 30(10): 103101. DOI: 10.1088/0256-307X/30/10/103101
ZHANG Cai-Ping, MIAO Xiang-Yang. Role of the Permanent Dipole Moment in Coulomb Explosion[J]. Chin. Phys. Lett., 2013, 30(10): 103101. DOI: 10.1088/0256-307X/30/10/103101
|
ZHANG Cai-Ping, MIAO Xiang-Yang. Role of the Permanent Dipole Moment in Coulomb Explosion[J]. Chin. Phys. Lett., 2013, 30(10): 103101. DOI: 10.1088/0256-307X/30/10/103101
ZHANG Cai-Ping, MIAO Xiang-Yang. Role of the Permanent Dipole Moment in Coulomb Explosion[J]. Chin. Phys. Lett., 2013, 30(10): 103101. DOI: 10.1088/0256-307X/30/10/103101
|