Double-Peak N-Shaped Negative Differential Resistance in a Quantum Dot Field Effect Transistor
-
Abstract
Double-peak N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio is observed in the output characteristics of a GaAs-based modulation-doped field effect transistor with InAs quantum dots in the barrier layer (QDFET). One NDR peak with a higher source-drain voltage VDS is explained as the real-space transfer (RST) of high-mobility electrons in the channel into the quantum dots layer, while the other with a lower VDS is caused by the high-mobility RST electrons in the channel into the modulation-doped AlGaAs barrier layer on the other side. We depict a point how a thinner Schottky barrier layer provides a stronger potential, opening a possibility of two-directional channel electron transfer when a much higher VG is applied. The result suggests that the QDFET can be an attractive candidate for high-speed logic application and memory devices. -
References
[1] Son H, Kim J, Kim M and Hong S 2001 Jpn. J. Appl. Phys. 40 2801 doi: 10.1143/JJAP.40.2801 [2] Yusa G and Sakaki H 1997 Appl. Phys. Lett. 70 345 [3] Li Y Q, Liu W, Wang X D, Chen Y L, Yang F H and Zeng Y P 2010 J. Functional Mater. Devices 16 596 (in Chinese) [4] Shields A J, O'Sullivan M P, Farrer I, Ritchie D A, Cooper K, Foden C L and Pepper M 1999 Appl. Phys. Lett. 74 735 [5] Yang X H, Xu X L, Wang X P, Ni H Q, Han Q, Niu Z C and Willams D 2010 Appl. Phys. Lett. 96 083503 [6] Wang T H, Li H W and Zhou J M 2003 Appl. Phys. Lett. 82 3092 [7] Huang Y L, Ma L, Yang F H, Wang L C, Zeng Y P 2006 Chin. Phys. Lett. 23 697 [8] Shields A J, O'Sullivan M P, Farrer I, Ritchie D A, Leadbeater M L Patel N K, Hogg R A, Norman C E, Curson N J and Pepper M 2001 Jpn. J. Appl. Phys. 40 2058 [9] Saidi F, Bouzaiene L, Sfaxi L and Maaref H 2012 J. Lumin. 132 289 [10] Chang Y C, Luo H L, Wang Y, Wang H S, Wang J G and Du G T 2002 Chin. Phys. Lett. 19 588 [11] Geller M, Marent A, Nowozin T et al 2008 Appl. Phys. Lett. 92 092108 [12] Robert H H 2009 Nature Photon. 3 696 [13] Li Y Q, Wang X D, Xu X N, Liu W, Chen Y L Yang F H, Tan P H and Zeng Y P 2010 Jpn. J. Appl Phys. 49 104002 [14] Esaki L and Tsu R 1970 IBM J. Res. Dev. 14 61 [15] Hess K, Morkoc K, Shichijo H and Streetman B G 1976 Appl. Phys. Lett. 35 469 [16] Sugaya T, Jang K Y, Hahn C K, Ogura M and Komori K 2005 J. Appl. Phys. 97 34507 [17] Sibille A, Palmier J F, Mollot F, Wang H and Esnault J C 1989 Phys. Rev. B 39 6272 [18] Orlov M L and Orlov L K 2009 Semiconductors 43 652 -
Related Articles