Alternating-Current Transport Properties in Nd0.7Sr0.3MnO3 Ceramic with Secondary Phases

  • Received Date: December 21, 2011
  • Revised Date: June 28, 2012
  • Published Date: June 30, 2012
  • Nd0.7Sr0.3MnO3 ceramics with secondary phases were prepared by ball-milling and post heat- treatment at 1623 K for 3, 7 and 13 h, respectively. The results from x-ray diffraction and energy dispersed spectroscopy show that some secondary phases are introduced and grow gradually with sintering time. These secondary phases have significant effects on the ac transport. For all the samples, the real part of impedance (Zr ) decreases with increasing frequency and the Zr peak moves to a higher temperature. Interestingly, for a given frequency the Zr peak decreases with sintering time. However, for samples B and C which were sintered for a longer time than sample A, an additional Zr peak appears at a higher temperature and gradually increases with sintering time. The reposition of trapped charges in phase/grain boundaries or secondary phases is supposed to be responsible for the unusual relaxation process.
  • Article Text

  • [1] Asamitsu A, Tomioka T, Kuwahara H and Tokura Y 1997 Nature 388 50 doi: 10.1038/40363
    [2] Kuwahara H, Tomioka Y, Moritomo Y, Asamitsu A, Kasai M, Kumai R and Tokura Y 1996 Science 272 80
    [3] Gao J and Hu F X 2005 Appl. Phys. Lett. 86 92504
    [4] Yang C P Chen S S, Zhou Z H, Xu L F, Wang H, Hu J F, Morchshakov V and B ?rner K 2007 J. Appl. Phys. 101 063909
    [5] Liu S Q, Wu N J and Ignatiev A 2000 Appl. Phys. Lett. 76 2749
    [6] Hwang H Y, Cheong S -W, Ong N P and Batlogg B 1996 Phys. Rev. Lett. 77 2041
    Manoharan S S, Elefant D, Reiss G and Goodenough J B 1998 Appl. Phys. Lett. 72 984
    [7] Balcells L, Carrillo A E, Martinez B and Fontcuberta J 1999 Appl. Phys. Lett. 74 4014
    [8] Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H Xiong L B, Yu Y, Medvedeva I V and B ?rner K 2010 Solid State Commun. 150 240
    [9] Cao G H, Feng L X and Wang C 2007 J. Phys. D: Appl. Phys. 40 2899
    [10] Fang T T and Liu C P 2005 Chem. Mater. 17 5167
    [11] Chung S Y, Kim I D and Kang S J L 2004 Nature Mater. 3 774
    [12] Klein A, S ?uberlich F, Sp?th B, Schulmeyer T and Kraft D 2007 J. Mater. Sci. 42 1890
    [13] Tiefenbacher S, Pettenkofer C and Jaegermann W 2002 J. Appl. Phys. 91 1984
    [14] Rüggeberg F and Klein A 2006 Appl. Phys. A 82 281
    [15] Gassenbauer Y, Wachau A and Klein A 2009 Phys. Chem. Chem. Phys. 11 3049
    [16] Maier J 2009 Phys. Chem. Chem. Phys. 11 3011
    [17] Klein J, Hofener C, Uhlenbruck S, Alff L, Buchner B and Gross R 1999 Europhys. Lett. 47 371
    [18] Todd N K, Mathur N D, Isaac S P, Evetts J E and Blamire M G 1999 J. Appl. Phys. 85 7263
    [19] Macdonald J R 1987 Impedance Spectroscopy: Emphasizing Solid Materials and Systems (New York: Wiley)
    [20] Chen S S, Wang R L, Wang H and Yang C P 2010 J. Rare Earth. 28 251
    [21] Chen S S, Yang C P, Deng H and Sun Z G 2008 Acta Phys. Sin. 57 3798 (in Chinese)
    [22] Chen S S, Yang C P, Zhou Z H, Guo D H, Wang H and Rao G H 2008 J. Alloys Compd. 463 271
    [23] Chen S S, Huang C, Wang R L, Yang C P, Medvedeva I V and Sun Z G 2011 Acta Phys. Sin. 60 521 (in Chinese)
    [24] Chen S S, Yang C P, Xu L F and Tang S L 2010 J. Mater. Sci. Technol. 26 721
    [25] Baerner K, Deng H, Wang H, Anarazov M, Medvdeva I V and Yang C P 2010 Physica B 405 999
    [26] Ni L and Chen X M 2007 Appl. Phys. Lett. 91 122905
  • Related Articles

    [1]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [2]XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
    [3]WEI Guang-Mei, GAO Yi-Tian, XU Tao, MENG Xiang-Hua, ZHANG Chun-Yi. Painleve Property and New Analytic Solutions for a Variable-Coefficient Kadomtsev--Petviashvili Equation with Symbolic Computation [J]. Chin. Phys. Lett., 2008, 25(5): 1599-1602.
    [4]YANG Xu-Dong, RUAN Hang-Yu, LOU Sen-Yue. Nonsingular Travelling Complexiton Solutions to a Coupled Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(3): 805-808.
    [5]YE Ling-Ya, LV Yi-Neng, ZHANG Yi, JIN Hui-Ping. Grammian Solutions to a Variable-Coefficient KP Equation [J]. Chin. Phys. Lett., 2008, 25(2): 357-358.
    [6]ZHANG Da-Jun. Conservation Laws and Lax Pair of the Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 2007, 24(11): 3021-3023.
    [7]ZHANG Chun-Yi, YAO Zhen-Zhi, ZHU Hong-Wu, XU Tao, LI Juan, MENG Xiang-Hua, GAO Yi-Tian. Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics [J]. Chin. Phys. Lett., 2007, 24(5): 1173-1176.
    [8]CAI Hao, HUANG Nian-Ning. Green’s Function Method for Perturbed Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2003, 20(4): 469-472.
    [9]WU Ke-xue, CHEN Shi-rong. An Alternative Form of Inverse Scattering Transform for the Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1998, 15(9): 654-656.
    [10]ZHANG Jiefang. Six Sets of Symmetries of the Variable Coefficient Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1994, 11(1): 4-7.

Catalog

    Article views (0) PDF downloads (690) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return