Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations
-
Abstract
Fractional propagation is used to reduce the spurious velocities for multiphase lattice Boltzmann models. The numerical results show that the maximum spurious velocity at the interfaces could be reduced effectively in comparison with some of the early models. Eight spurious eddies, which previously existed in the D2Q9 model at the interfaces of two-phase flows, are completely eliminated. Simulations are used to confirm these results using different parameters.
Article Text
-
-
-
About This Article
Cite this article:
WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 064705. DOI: 10.1088/0256-307X/29/6/064705
WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 064705. DOI: 10.1088/0256-307X/29/6/064705
|
WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 064705. DOI: 10.1088/0256-307X/29/6/064705
WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 064705. DOI: 10.1088/0256-307X/29/6/064705
|