The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models
-
Abstract
We study the symmetries, conservation laws and reduction of third-order equations that evolve from a prior reduction of models that arise in fluid phenomena. These could be the ordinary differential equations (ODEs) that are reductions of partial differential equations (PDEs) or, alternatively, PDEs related to given ODEs. In this class, the analysis includes the well-known Blasius, Chazy, and other associated third-order ODEs.
Article Text
-
-
-
About This Article
Cite this article:
K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060202. DOI: 10.1088/0256-307X/29/6/060202
K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060202. DOI: 10.1088/0256-307X/29/6/060202
|
K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060202. DOI: 10.1088/0256-307X/29/6/060202
K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 060202. DOI: 10.1088/0256-307X/29/6/060202
|