New Geometry with All Killing Vectors Spanning the Poincaré Algebra
-
Abstract
The new four-dimensional geometry whose Killing vectors span the Poincaré algebra is presented and its structure is analyzed. The new geometry can be regarded as the Poincaré-invariant solution of the degenerate extension of the vacuum Einstein field equations with a negative cosmological constant and provides a static cosmological spacetime with a Lobachevsky space. The motion of free particles in the spacetime is discussed.
Article Text
-
-
-
About This Article
Cite this article:
HUANG Chao-Guang, TIAN Yu, WU Xiao-Ning, XU Zhan, ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 040303. DOI: 10.1088/0256-307X/29/4/040303
HUANG Chao-Guang, TIAN Yu, WU Xiao-Ning, XU Zhan, ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 040303. DOI: 10.1088/0256-307X/29/4/040303
|
HUANG Chao-Guang, TIAN Yu, WU Xiao-Ning, XU Zhan, ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 040303. DOI: 10.1088/0256-307X/29/4/040303
HUANG Chao-Guang, TIAN Yu, WU Xiao-Ning, XU Zhan, ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 040303. DOI: 10.1088/0256-307X/29/4/040303
|