An Effective Eigenchannel R-Matrix Method for Calculating Electron-Ion Scattering Processes with Spectroscopic Precision

  • Received Date: November 21, 2011
  • Revised Date: December 31, 1899
  • Published Date: February 29, 2012
  • The electron-ion scattering processes are very important in various scientific research fields such as astrophysical studies and inertial confinement fusion research. We report our recent development of an efficient method for providing such atomic data with spectroscopic precision. Based on the Breit–Pauli and the Dirac R-matrix theory, we develop two eigenchannel R-matrix codes, referred to as R-eigen (non-relelativistic eigenchannel R-matrix) and R-R-eigen (relativistic eigenchannel R-matrix), to directly calculate the physical quantities in multichannel quantum defect theory in the whole energy regions. From such physical quantities, we can obtain all energy levels and the related scattering cross sections with accuracies comparable with spectroscopic precision. The e+Kr+ system is used as an illustration example, the degrees of accuracies of scattering matrices are calculated within about 2%, which should be much more accurate than state-of-the-art scattering experiments.
  • Article Text

  • [1] Dalgarno A 1979 Adv. At., Mol. Phys. 15 37
    [2] Kallman T R and Palmeri P 2007 Rev. Mod. Phys. 79 79
    [3] Beiersdorfer P 2003 Annu. Rev. Astron. Astrophys. 41 343
    [4] Lindl J D et al 2004 Phys. Plasmas 11 339
    [5] 2005 Nuclear Fusion Research: Understanding Plasma Surface Interactions in Springer Series in Chemical Physics (Berlin: Springer) vol 78
    [6] Seaton M J and Opacity Project Team 1995 The Opacity Project (Bristol: Institute of Physics Publishing) vols 1 and 2
    [7] Lin C C et al 2005 Adv. At., Mol. Phys. 51 385
    Williams I D 1999 Rep. Prog. Phys. 62 1431
    [8] Seaton M J 1983 Rep. Prog. Phys. 46 167
    [9] Li J M 1980 Acta. Phys. Sin. 29 419 (in Chinese)
    [10] Li J M et al 2010 Plasma Sci. Technol. 12 335
    [11] Gao X et al 2011 Chin. Phys. Lett. 28 033101
    [12] Burke P G and Robb W D 1975 Adv. At. Mol. Phys. 11 143
    Berrington K A et al 1995 Comput. Phys. Commun. 92 290
    [13] Chang J J 1975 J. Phys. B: At. Mol. Phys. 10 3335
    Norrington P H and Grant I P 1987 J. Phys. B: At. Mol. Phys. 20 4869
    Ait-Tahar S, Grant I P and Norrington P H 1996 Phys. Rev. A 54 3984
    [14] Seaton M J 1985 J. Phys. B: At. Mol. Phys. 18 2111
    [15] Berrington K A et al 1987 J. Phys. B: At. Mol. Phys. 20 6379
    [16] Li J M et al 1997 Phys. Rev. A 55 3239
    Han X Y and Li J M 2006 Phys. Rev. A 74 062711
    [17] Fano U and Lee C M (Li J M) 1973 Phys. Rev. Lett. 31 1573
    Lee C M (Li J M) 1974 Phys. Rev. A 10 584
    [18] Fano U 1975 J. Opt. Soc. Am. 65 979
    Aymar M, Greene C H and Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015
    [19] Lee C M (Li J M) and Lu K T 1973 Phys. Rev. A 8 1241
    [20] Huang W et al 1995 Phys. Rev. A 52 2770
    Zou Y et al 1995 Acta. Phys. Sin. 44 50 (in Chinese)
    [21] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3. 1.5) http: //physics.nist.gov/PhysRefData/ASD/levels_form.html [7 January 2010] (Gaithersburg: National Institute of Standards and Technology)
    [22] Seaton M J 1982 Comput. Phys. Commun. 25 87
  • Related Articles

    [1]Chandaneswar Midya. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface [J]. Chin. Phys. Lett., 2012, 29(1): 014701. doi: 10.1088/0256-307X/29/1/014701
    [2]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet [J]. Chin. Phys. Lett., 2011, 28(9): 094702. doi: 10.1088/0256-307X/28/9/094702
    [3]Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705
    [4]Krishnendu Bhattacharyya. Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet [J]. Chin. Phys. Lett., 2011, 28(7): 074701. doi: 10.1088/0256-307X/28/7/074701
    [5]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701
    [6]LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow [J]. Chin. Phys. Lett., 2010, 27(6): 064701. doi: 10.1088/0256-307X/27/6/064701
    [7]LI Xin-Liang, FU De-Xun, MA Yan-Wen, GAO Hui. Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow [J]. Chin. Phys. Lett., 2009, 26(9): 094701. doi: 10.1088/0256-307X/26/9/094701
    [8]Anuar Ishak. Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream [J]. Chin. Phys. Lett., 2009, 26(3): 034701. doi: 10.1088/0256-307X/26/3/034701
    [9]Anuar Ishak, Roslinda Nazar, Ioan Pop. Boundary Layer on a Moving Wall with Suction and Injection [J]. Chin. Phys. Lett., 2007, 24(8): 2274-2276.
    [10]CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity [J]. Chin. Phys. Lett., 2007, 24(7): 1989-1991.

Catalog

    Article views (3) PDF downloads (630) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return