Entanglement of the Thermal State of an Anisotropic XYZ Spin Chain in an Inhomogeneous Constant Magnetic Field
-
Abstract
A system of a two-qubit Heisenberg anisotropic XYZ spin chain in an inhomogeneous constant magnetic field with the Dzyaloshinskii–Moriya interaction is studied. The energy eigenvalues, the corresponding eigenstates and the thermal states of the system are evaluated. The entanglement is investigated according to Wootter's concurrence. The concurrence is studied against temperature for different values of the parameters involved. -
References
[1] Nielsen M A and Chung I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University) [2] Novaes M 2005 Ann. Phys. 318 308 [3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091 [4] Jonathan D, Plenio M B and Knight P L 2000 Phys. Rev. A 62 042307 [5] Anders S and Klaus M 2000 Phys. Rev. A 62 022311 [6] Lieven M K V 2001 PhD Thesis (Stanford University) [7] Emary C, Trauzettel B and Beenakker C W J 2005 Phys. Rev. Lett. 95 127401 [8] Wang X, Sanders B C and Pan S 2000 J. Phys. A: Math. Gen. 33 7451 [9] Hill S and Wootter W K 1997 Phys. Rev. Lett. 78 5022 [10] Wootter W K 1998 Phys. Rev. Lett. 80 2245 [11] Vidal G and Werner R F 2002 Phys. Rev. A 65 0302314 [12] Schuch N N and Siewert J 2003 Phys. Rev. A 67 032301 [13] Wang X 2001 Phys. Rev. A 62 012313 [14] Yeo Y 2005 J. Phys. A 38 3235 [15] Subrahmanyam V and Lakshminarayan A 2006 Phys. Lett. A 349 164 [16] Wang X and Zanardi P 2002 Phys. Lett. A 301 1 [17] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301 [18] Gunlycke D 2001 Phys. Rev. A 64 042302 [19] Subrahmanyam V 2004 Phys. Rev. A 69 022311 [20] Dzyaloshinskii I 1958 J. Phys. Chem. Soilds 4 241 [21] Moriya T 1960 Phys. Rev. 117 635 [22] Moriya T 1960 Phys. Rev. Lett. 4 228 [23] Moriya T 1960 Phys. Rev. 120 91 [24] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. Lett. 25 817 [25] Li D C and Cao Z L 2009 Int. J. Quant. Inform. 7 547 [26] Abliz A, Cai J T, Zhang G F and Jin G S 2009 J. Phys. B 42 215503 [27] Kargarian M, Jafari R and Langari L 2009 Phys. Rev. A 79 042319 [28] Zhang G F 2007 Phys. Rev. A 75 034304 [29] Albayrak E 2009 Eur. Phys. J. B 72 491 [30] Albayrak E 2011 Chin. Phys. Lett. 28 020306
-
Related Articles
[1] LI Tong-Zhong. New Vacuum State of the Electromagnetic Field-Matter CouplingSystem and the Physical Interpretation of Casimir Effect [J]. Chin. Phys. Lett., 2004, 21(1): 73-75. [2] ZHU Zong-Hong. Cosmic Wave Functions with the Brans-Dicke Theory [J]. Chin. Phys. Lett., 2000, 17(11): 856-858. [3] HE Feng, LIU liao. A New Traversable Wormhole Solution in Vacuum Brans-Dicke Theory [J]. Chin. Phys. Lett., 1999, 16(6): 394-396. [4] ZHAO Feng, LIU Liao. Traversable Lorentzian Wormholes in Brans-Dicke’s and Induced Gravity Theories [J]. Chin. Phys. Lett., 1996, 13(12): 881-884. [5] XIAO Xing-guo, ZHU Jian-yang. Wormhole Solution in Vacuum Brans-Dicke Theory with Cosmological Constant [J]. Chin. Phys. Lett., 1996, 13(6): 405-408. [6] SHEN Yougen. Quantum Field Theory of the Universe in the Induced Gravity [J]. Chin. Phys. Lett., 1995, 12(8): 509-512. [7] ZHANG Yuan Zhong. Newtonian Limit in Generalized Brans-Dicke Theory [J]. Chin. Phys. Lett., 1993, 10(9): 513-515. [8] ZHU Zonghong. Boundary Conditions in Quantum Cosmology in the Brans-Dicke’s Theory [J]. Chin. Phys. Lett., 1992, 9(5): 273-276. [9] XIANG Yingming, LIU Liao. Third Quantization of a Solvable Model in Quantum Cosmology in Brans-Dicke Theory [J]. Chin. Phys. Lett., 1991, 8(1): 52-55. [10] ZHU zonghong, HUANG Chaoguang, LIU Liao. A SOLVABLE MODEL IN QUANTUM COSMOLOGY IN THE BRANS-DICKES THEORY [J]. Chin. Phys. Lett., 1990, 7(10): 477-480.