Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water

  • Received Date: November 18, 2011
  • Revised Date: December 31, 1899
  • Published Date: January 31, 2012
  • Mechanisms for the evolution of a single spherical bubble subjected to sound excitation in water are studied from the viewpoint of nonlinear dynamics. First, the shooting method is combined with a Poincaré map to obtain the fixed point for the case of forced oscillation in volume. Then, the stabilities are judged by Floquet theory and the bifurcation theorem. Moreover, the transitions of bubble oscillation in volume due to sound excitation in water are explained from the viewpoint of nonlinear dynamics in detail. The results show that with an increase in sound frequency, the period-1 oscillation becomes unstable, and oscillation behaves in a double-periodic manner, then a quasi-periodic manner, and finally chaotically. Additionally, with an increase of the amplitude of the sound pressure, the bubble eventually oscillates with chaos via a series of period-doubling bifurcations.
  • Article Text

  • [1] Lauterborn W and Ohl C 1997 Ultrason. Sonochem. 4 65
    [2] Lauterborn W, Kurz T, Geisler R, Schanz D and Lindau O 2007 Ultrason. Sonochem. 14 484
    [3] Rayleigh L 1917 Philos. Mag. 34 94
    [4] Plesset M and Prosperetti A 1977 Annu. Rev. Fluid. Mech. 9 145
    [5] Keller J and Miksis M 1980 J. Acoust. Soc. Am. 68 628
    [6] Prosperetti A, Crum L and Commander K 1988 J. Acoust. Soc. Am. 83 502
    [7] Feng Z C and Leal L G 1997 Annu. Rev. Fluid. Mech. 29 201
    [8] Franc J P and Michel J M 2004 Fundamentals of Cavitation (Dordrecht: Kluwer Academic Publisher)
    [9] Cunha F R, Sousa A J and Morais P C 2002 J. Magn. Magn. Mater. 252 271
    [10] Zhu S L and Zhong P 1999 J. Acoust. Soc. Am. 106 3024
    [11] Ji B, Luo X W, Zhang Y, Ran H J, Xu H Y and Wu Y L 2010 Chin. Phys. Lett. 27 096401
    [12] Parlitz U, Englisch V, Scheffczyk C and Lauterborn W 1990 J. Acoust. Soc. Am. 88 1061
    [13] Behnia S, Jafari A, Soltanpoor W and Jahanbakhsh O 2009 Chaos Solitons Fractals 41 818
    [14] Behnia S, Sojahrood A J, Soltanpoor W and Jahanbakhsh O 2009 Ultrason. Sonochem. 16 502
  • Related Articles

    [1]ZHANG Li, WEI Bing-Tao, FANG Jun. Leptonic Origin of TeV Gamma-Ray Emission from Crab Nebula [J]. Chin. Phys. Lett., 2007, 24(10): 3009-3012.
    [2]JIANG Ze-Jun, ZHANG Li. Effect of Gamma-Ray Beaming on the Fluxes of Gamma-Ray Pulsars [J]. Chin. Phys. Lett., 2005, 22(5): 1289-1292.
    [3]ZHANG Li, JIANG Ze-Jun. Fluxes and Death Lines of Gamma-Ray Pulsars [J]. Chin. Phys. Lett., 2003, 20(12): 2273-2276.
    [4]ZHANG Xiong, ZHAO Gang, CHENG Guang-Sheng, ZHANG Li. Gamma-Ray and Multiwaveband Emission from Gamma-Ray-Loud BL Lacertae Objects [J]. Chin. Phys. Lett., 2003, 20(7): 1183-1186.
    [5]ZHANG Li, WU Jie, JIANG Ze-Jun, MEI Dong-Cheng. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-RayEmission [J]. Chin. Phys. Lett., 2003, 20(3): 433-435.
    [6]HUANG Yong-feng, DAI Zi-gao, LU Tan. Overall Evolution of Realistic Gamma-Ray Burst Remnant and Its Afterglow [J]. Chin. Phys. Lett., 1999, 16(10): 775-777.
    [7]ZHANG Shu, LI Ti-pei, WU Mei. A Possible Glitch of Gamma-Ray Pulsar Geminga? [J]. Chin. Phys. Lett., 1998, 15(1): 74-75.
    [8]LI Ti-pei, WU Mei. Gamma-Ray Bursts from Discharges in Plasmas [J]. Chin. Phys. Lett., 1997, 14(7): 557-560.
    [9]CHE Hai-hong, LI Ti-pei, YANG Yu-xuan. Two Different Burster Spatial Distributions of Gamma-Ray Bursts ? [J]. Chin. Phys. Lett., 1996, 13(12): 957-960.
    [10]LI Ti-pei. Property Changes of Gamma-Ray Bursts [J]. Chin. Phys. Lett., 1996, 13(8): 637-640.

Catalog

    Article views (2) PDF downloads (533) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return