Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2 Graduate University of Chinese Academy of Sciences, Beijing 100049
Received Date:
September 04, 2011
Revised Date:
December 31, 1899
Published Date:
December 31, 2011
Abstract
An accurate and numerically stable method based on the coupled-mode theory is presented. By applying the direct global matrix approach to obtain the modal expansion coefficients, this method is numerically stable. In addition, appropriately normalized range solutions are introduced, which resolves the overflow problem entirely. Furthermore, we put forward source conditions appropriate for the line-source problem in plane geometry. As a result, this method is capable of dealing with the scenario where a line source is located inside the region of a deformation. Closed-form expressions for coupling matrices are provided for ideal waveguides. Numerical results indicate that the present method is accurate and numerically stable. Consequently, this model can serve as a benchmark in range-dependent propagation modeling.
Article Text
References
[1]
Collis J M, Siegmann W L, Jensen F B, Zampolli M, Küsel E T and Collins M D 2008 J. Acoust. Soc. Am. 123 51
[2]
Pierce A D 1965 J. Acoust. Soc. Am. 37 19
[3]
Collins M D, Schmidt H and Siegmann W L 2000 J. Acoust. Soc. Am. 107 1964
[4]
Zampolli M, Tesei A, Jensen F B, Malm N and Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472
[5]
Ferla C, Porter M and Jensen F 1993 C-SNAP: Coupled SACLANTCEN normal mode propagation model (La Spezia: SACLANT Undersea Research Centre)
[6]
Porter M B, Jensen F B and Ferla C M 1991 J. Acoust Soc. Am. 89 1058
[7]
Evans R B 1986 J. Acoust. Soc. Am. 80 1414
[8]
Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics (New York: American Institute of Physics)
[9]
Schmidt H and Jensen F B 1985 J. Acoust. Soc. Am. 77 813
[10]
1986 J. Acoust. Soc. Am. Suppl. 1 80 S36
[11]
1987 J. Acoust. Soc. Am. Suppl. 1 81 S39
[12]
Jensen F B and Ferla C M 1990 J. Acoust. Soc. Am. 87 1499
[13]
Buckingham M J and Tolstoy A 1990 J. Acoust. Soc. Am. 87 1511
Related Articles
[1] WANG Jia, YE Tao, SUN Wei-Li, Yukinobu Watanabe, Kazuyuki Ogata. Inclusive Proton Energy Spectra of the Deuteron Induced Reaction [J]. Chin. Phys. Lett., 2011, 28(11): 112401. doi: 10.1088/0256-307X/28/11/112401
[2] Mukhtar Ahmed Rana, Gul Sher, Shahid Manzoor, M. I. Shahzad. Fission of Weakly Prolate 119 Sn and Weakly Oblate 209 Bi Nuclei Induced by 500 and 672 MeV Negative Pions [J]. Chin. Phys. Lett., 2011, 28(9): 092501. doi: 10.1088/0256-307X/28/9/092501
[3] G. Sher, Mukhtar A. Rana, S. Manzoor, M. I. Shahzad. Negative Pion Induced Fission with Heavy Target Nuclei [J]. Chin. Phys. Lett., 2011, 28(1): 012501. doi: 10.1088/0256-307X/28/1/012501
[4] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu, SU Zhen-Peng, ZHENG Hui-Nan. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves [J]. Chin. Phys. Lett., 2009, 26(11): 119401. doi: 10.1088/0256-307X/26/11/119401
[5] Zafar Yasin. Dependence of Nucleon and Pion-Induced Fission Cross Sections on the Level Density Parameter in the Cascade-Exciton Model [J]. Chin. Phys. Lett., 2009, 26(8): 082505. doi: 10.1088/0256-307X/26/8/082505
[6] S. Soheyli. Energy and Mass Distributions of Induced-Fission of 197 Au Nucleus by 29MeV Protons [J]. Chin. Phys. Lett., 2007, 24(6): 1525-1528.
[7] WANG Kun, MA Yu-Gang, WEI Yi-Bin, CAI Xiang-Zhou, CHEN Jin-Gen, FANG De-Qing, GUO Wei, MA Guo-Liang, SHEN Wen-Qing, TIAN Wen-Dong, ZHONG Chen, ZHOU Xing-Fei. Isoscaling of the Fission Fragments with Langevin Equation [J]. Chin. Phys. Lett., 2005, 22(1): 53-56.
[8] YANG Chun-Bin. Parton Distributions of Pions in the Valon Model [J]. Chin. Phys. Lett., 2003, 20(6): 821-824.
[9] LIU Zuhua. Fission Before K Statistical Equilibration [J]. Chin. Phys. Lett., 1995, 12(11): 653-656.
[10] PAN Zhengying, YUAN Zhushu, YANG Fuchia. FISSION-LIKE ESTIMATE FOR THE EMISSION OF HEAVY CLUSTERS [J]. Chin. Phys. Lett., 1986, 3(4): 145-148.
About This Article
Cite this article:
LUO Wen-Yu, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J].
Chin. Phys. Lett. , 2012, 29(1): 014302.
DOI: 10.1088/0256-307X/29/1/014302
LUO Wen-Yu, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett. , 2012, 29(1): 014302. DOI: 10.1088/0256-307X/29/1/014302