Second-Order Born Effect in Single Ionization of Argon by Electron Impact
-
Abstract
We extend the standard distorted wave Born approximation (DWBA) to include the second-order Born amplitude in order to describe the multiple interactions between a projectile and an atomic target. Both the first- and second-order DWBA models are used to calculate triply differential cross sections (TDCS) of coplanar (e, 2e) on atomic argon with the scattered electron energy fixed at 500 eV, the scattering angle at 6° and the ejected electron energies at 37, 74 and 205 eV. Overall agreements with experimental measurements have been obtained in shape, and the second-order DWBA model improves the calculations as expected, especially for recoil peak of TDCS.
Article Text
-
-
-
About This Article
Cite this article:
WANG Yang, ZHOU Ya-Jun, JIAO Li-Guang. Second-Order Born Effect in Single Ionization of Argon by Electron Impact[J]. Chin. Phys. Lett., 2012, 29(1): 013401. DOI: 10.1088/0256-307X/29/1/013401
WANG Yang, ZHOU Ya-Jun, JIAO Li-Guang. Second-Order Born Effect in Single Ionization of Argon by Electron Impact[J]. Chin. Phys. Lett., 2012, 29(1): 013401. DOI: 10.1088/0256-307X/29/1/013401
|
WANG Yang, ZHOU Ya-Jun, JIAO Li-Guang. Second-Order Born Effect in Single Ionization of Argon by Electron Impact[J]. Chin. Phys. Lett., 2012, 29(1): 013401. DOI: 10.1088/0256-307X/29/1/013401
WANG Yang, ZHOU Ya-Jun, JIAO Li-Guang. Second-Order Born Effect in Single Ionization of Argon by Electron Impact[J]. Chin. Phys. Lett., 2012, 29(1): 013401. DOI: 10.1088/0256-307X/29/1/013401
|