A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation

  • Received Date: February 16, 2011
  • Published Date: June 30, 2011
  • The Kurganov scheme is a third-order semi-discrete central numerical algorithm. The high solution of the scheme is ensured by a piecewise quadratic non-oscillatory reconstruction which consists of the cell-average data. We employ a modification of the smooth limiter of reconstruction in a simple way. The modified limiter possesses rigorous positivity and the reformulation does not change the non-oscillatory property of reconstruction. In order to explore the potential capability of application of the modified Kurganov scheme to magnetohydrodynamics (MHD) and resistive magnetohydrodynamics (RMHD) equations, two numerical problems are simulated in two dimensions (2D). These numerical simulations demonstrate that the modified Kurganov scheme keeps high precision and has stable reliable results for MHD and RMHD applications.
  • Article Text

  • [1] Kurganov A, Petrova G 2001 Numer. Math. 88 683
    [2] Kurganov A, Noelle S and Petrova G 2001 SIAM J. Sci. Comput. 23 707
    [3] Kurganov A, Tadmor E 2000 J. Comput. Phys. 60 241
    [4] Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 720
    [5] Kurganov A, Levy D 2000 SIAM J. Sci. Comput. 22 1461
    [6] Bryson S, Levy D 2003 J. Comput. Phys. 189 63
    [7] Bryson S, Levy D 2006 J. Sci. Comput. 27 163
    [8] Abreu E, Pereira F, Ribeiro S 2009 Comput. Appl. Math. 28 87
    [9] Greenshields C J, Weller H G, Gasparini L and Reese J M 2010 Int. J. Numer. Meth. Fluids. 63 1
    [10] Dehghan M, Jazlanian R 2010 J. Vib. Control (accepted)
    [11] Peer A A I, Gopaul A, Dauhoo M Z and Bhuruth M 2008 Appl. Numer. Math. 58 674
    [12] Bryson S, Kurganov A, Levy D and Petrova G 2005 IMA J. Numer. Anal. 25 113
    [13] Kurganov A, Petrova G and Popov B 2007 SIAM J. Sci. Comput. 29 2381
    [14] Kurganov A, Petrova G 2009 SIAM J. Sci. Comput. 31 1742
    [15] Harten A, Engquist B, Osher S and Chakravarthy S R 1987 J. Comput. Phys. 71 231
    [16] Shu C W 1990 J. Sci. Comput. 5 127
    [17] Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202
    [18] Liu X D, Osher S and Chan T 1994 J. Comput. Phys. 115 200
    [19] Levy D, Puppo G and Russo G 1999 Math. Model. and Numer. Anal. 33 547
    [20] Dai W, Woodward P R 1998 J. Comput. Phys. 142 331
    [21] Han J Q, Tang H Z 2007 J. Comput. Phys. 220 791
    [22] Feng X S, Zhou Y F and Hu Y Q 2006 Chin. J. Space Sci. 26 1
    [23] Wei F S, Hu Q and Feng X S 2001 Chin. Sci. Bull. 46 111
    [24] Wei F S, Hu Q, Schwen R and Feng X S 2000 Sci. Chin. A 43 629
    [25] Xiong M, Peng Z, Hu Y Q, Zheng H N 2009 Chin. Phys. Lett. 26 015202
    [26] Zheng H N, Zhang Y Y and Wang S et al 2006 Chin. Phys. Lett. 23 399
    [27] Feng X S, Yang L P and Xiang C Q et al 2010 Astrophys. J. 723 300
    [28] Feng X S, Hu Y Q and Wei F S 2006 Sol. Phys. 235 235
    [29] Hu Y Q, Feng X S 2006 Sol. Phys. 238 329
  • Related Articles

    [1]E. OZTURK. Effect of Magnetic Field on a p-Type δ-Doped GaAs Layer [J]. Chin. Phys. Lett., 2010, 27(7): 077302. doi: 10.1088/0256-307X/27/7/077302
    [2]XU Yue, YAN Feng, CHEN Dun-Jun, SHI Yi, WANG Yong-Gang, LI Zhi-Guo, YANG Fan, WANG Jos-Hua, LIN Peter, CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory [J]. Chin. Phys. Lett., 2010, 27(6): 067201. doi: 10.1088/0256-307X/27/6/067201
    [3]WANG Hui, ZHU Ji-Hong, JIANG De-Sheng, ZHU Jian-Jun, ZHAO De-Gang, LIU Zong-Shun, ZHANG Shu-Ming, YANG Hui. InGaN/GaN p-i-n Photodiodes Fabricated with Mg-Doped p-InGaN Layer [J]. Chin. Phys. Lett., 2009, 26(10): 107302. doi: 10.1088/0256-307X/26/10/107302
    [4]YANG Ling, HAO Yue, LI Pei-Xian, ZHOU Xiao-Wei. Activation of Hydrogen-Passivated Mg in GaN-Based Light Emitting Diode Annealing with Minority-Carrier Injection [J]. Chin. Phys. Lett., 2009, 26(1): 017103. doi: 10.1088/0256-307X/26/1/017103
    [5]HE Bin, CHEN Guang-Hua, LI Zhi-Zhong, DENG Jin-Xiang, ZHANG Wun-Jun. P-BN/n-Si Heterojunction Prepared by Beryllium ion Implantation [J]. Chin. Phys. Lett., 2008, 25(1): 219-222.
    [6]HOU Lian-Ping, ZHU Hong-Liang, ZHOU Fan, WANG Lu-Feng, BIAN Jing, WANG Wei. Laser Diode Integrated with a Dual-Waveguide Spot-Size Converter by Low-Energy Ion Implantation Quantum Well Intermixing [J]. Chin. Phys. Lett., 2005, 22(7): 1684-1686.
    [7]PAN Yao-Bo, YANG Zhi-Jian, LU Yu, LU Min, HU Cheng-Yu, YU Tong-Jun, HU Xiao-Dong, ZHANG Guo-Yi. Improvement of Properties of p-GaN by Mg Delta Doping [J]. Chin. Phys. Lett., 2004, 21(10): 2016-2018.
    [8]YAO Shu-De, ZHOU Sheng-Qiang, YANG Zi-Jian, LU Yi-Hong, SUN Chang-Chun, SUN Chang, ZHANG Guo-Yi, VANTOMME Andre, PIPELEERS Bert, ZHAO Qiang. P-Type Doping of GaN by Mg+ Implantation [J]. Chin. Phys. Lett., 2003, 20(1): 102-104.
    [9]YANG Quan-kui, LI Ai-zhen, CHEN Jian-xin. Investigation of Hole Mobility in GaInP/(In) GaAs/GaAs p-Type Modulation Doped Heterostructures [J]. Chin. Phys. Lett., 1999, 16(1): 50-52.
    [10]XIAO Guangming, YIN Shiduan, ZHANG Jingping, DING Aiju, DONG Aihua, ZHU Peiran, ZHOU Junming, LIU Jiarui. Implantation Energy Selection in Molecular-Beam Epitaxy GaAs Films on Si Substrates [J]. Chin. Phys. Lett., 1991, 8(3): 149-152.

Catalog

    Article views (1) PDF downloads (598) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return