Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate
-
Abstract
We present a theoretical and experimental study on the bandwidth of parametric down-converted photons generated from periodically poled lithium niobate (PPLN) crystal pumped by a pulsed laser. By comparison of crystals with different lengths and pump beams of different bandwidths, we demonstrate that the bandwidth of down-converted photons will increase for a broader bandwidth of pump pulse and decrease for a longer crystal, but the influence of crystal length will become weaker along with increase of both crystal length and pump pulse bandwidth. Especially under the conditions of our experiment, the bandwidth almost remains unchanged for longer crystals when pumped by a femtosecond laser. This may be helpful for schemes in which pulsed lasers are used to pump PPLN crystals. -
References
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661 [2] Ribordy G, Brendel J, Gautier J, Gisin N and Zbinden H 2001 Phys. Rev. A 63 012309 [3] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84 4729 [4] Tittel W, Brendel J, Zbinden and H, Gisin N 2000 Phys. Rev. Lett. 84 4737 [5] Marcikic I, de Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509 [6] Furuaswa A, Sorense J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706 [7] Briegel H J, DürW, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932 [8] Burnham D C, Weinberg D L 1970 Phys. Rev. Lett. 25 84 [9] Kwiat P, Mattle K, Weinfurter H, Zeilinger A, Sergienko A and Shih Y 1995 Phys. Rev. Lett. 75 4337 [10] Altepeter J B, Jeffrey E R and Kwiat P G 2005 Opt. Express 13 8951 [11] Lim H, Yoshizawa A, Tsuchida H and Kikuchi K 2008 Opt. Express 16 14512 [12] Sauge S, Swillo M, Albert-Seifried S, Xavier G B, Waldebäck J, Tengner M, Ljunggren D and Karlsson A 2007 Opt. Express 15 6926 [13] Hübel H, Vanner M R, Lederer T, Blauensteiner B, Lorünser T, Poppe A and Zeilinger A 2007 Opt. Express 15 7853 [14] Shi B S and Tomita A 2004 J. Opt. Soc. Am. B 21 12 [15] Fejer M, Magel G A, Jundt D H and Byer R L 1992 IEEE J. Quantum Electron. 28 2631 [16] Guillet de Chatellus H, Sergienko A V, Saleh B E A, Teich M C and Di Giuseppe G 2006 Opt. Express 14 10060 [17] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50 [18] Kuzucu O and Wong F N C 2008 Phys. Rev. A 77 032314 [19] Liu B H, Sun F W, Gong Y X, Huang Y F, Ou Z Y and Guo G C 2007 Europhys. Lett. 77 24003 [20] Sun F W, Liu B H, Huang Y F, Ou Z Y and Guo G C 2006 Phys. Rev. Lett. 74 033812 [21] Ljunggren D and Tengner M 2005 Phys. Rev. A 72 062301 [22] Fedrizzi A, Herbst T, Poppe A, Jennewein T and Zeilinger A 2007 Opt. Express 15 15377 [23] Lim H C, Yoshizawa A, Tsuchida H and Kikuchi K 2008 Opt. Express 16 12460 [24] Martin A, Cristofori V, Aboussouan P, Herrmann H, Sohler W, Ostrowsky D B, Alibart O and Tanzilli S 2009 Opt. Express 17 1033 [25] Huang J F, Liu B H, Fang B, Huang Y F and Guo G C 2009 Chin. Phys. Lett. 26 074214
-
Related Articles
[1] Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601 [2] DOU Quan-Tao, ZUO Guang-Hong, FANG Hai-Ping. Interaction between a Functionalized Single-Walled Carbon Nanotube and the YAP65WW Protein Domain: a Molecular Dynamics Simulation Study [J]. Chin. Phys. Lett., 2012, 29(6): 068701. doi: 10.1088/0256-307X/29/6/068701 [3] GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface [J]. Chin. Phys. Lett., 2010, 27(6): 066802. doi: 10.1088/0256-307X/27/6/066802 [4] LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide [J]. Chin. Phys. Lett., 2010, 27(3): 036501. doi: 10.1088/0256-307X/27/3/036501 [5] HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites [J]. Chin. Phys. Lett., 2008, 25(8): 2973-2976. [6] SUN Tie-Ying, LONG Xing-Gui, WANG Jun, HOU Qing, WU Zhong-Cheng, PENG Shu-Ming, LUO Shun-Zhong. Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals [J]. Chin. Phys. Lett., 2008, 25(5): 1784-1787. [7] ZENG Zhao-Yi, CHEN Xiang-Rong, ZHU Jun, HU Cui-E. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2008, 25(1): 230-233. [8] ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of [J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990. [9] WANG Ling, NING Xi-Jing. Molecular Dynamics Simulations of Helium Behaviour in Copper Crystals [J]. Chin. Phys. Lett., 2003, 20(9): 1416-1419. [10] FENG Xiao-Li, LI Zhi-Xin, GUO Zeng-Yuan. Size Effect of Lattice Thermal Conductivity Across NanoscaleThin Films by Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2001, 18(3): 416-418.