-
Abstract
With the aid of an atomic force microscope (AFM), we study the interaction between linear DNA fragment and cisplatin. For different cisplatin concentrations, the AFM used to observe the conformation of DNA has a gradual change. The contour length, the end-to-end distance and the local bend angles of the linear DNA fragment can be accurately measured. The persistence length of DNA interacting with cisplatin is decreased with the increasing cisplatin concentration. Furthermore, it is demonstrated that the local bend angles of DNA chains are increased by the binding interaction of cisplatin. -
References
[1] Chaney S G et al 2004 J. Inorg. Biochem. 98 1551 [2] Lippard S J 1982 Science 218 1075 [3] Bruhn S L et al 1990 Prog. Inorg. Chem. 38 477 [4] Bancroft D P et al 1990 J. Am. Chem. Soc. 112 6860 [5] Johnson N P et al 1980 Chem. Biol. Interact. 30 151 [6] Vaisman A and Chaney S G 2000 J. Biol. Chem. 275 13017 [7] Jung Y W and Lippard S J 2003 J. Biol. Chem. 278 52084 [8] Jamieson E R and Lippard S J 1999 Chem. Rev. 99 2467 [9] Kartalou M and Essigmann J M 2001 Mutat. Res. 478 23 [10] Takahara P M et al 1996 J. Am. Chem. Soc. 118 12309 [11] Takahara P M et al 1995 Nature 377 649 [12] Gelasco A and Lippard S J 1998 Biochemistry 37 9230 [13] Stehlikova K et al 2002 Nucleic Acids Res. 30 2894 [14] Onoa G B and Moreno V 2002 Int. J. Pharm. 245 55 [15] Ruiz J, Cutillas N et al 2005 Inorg. Chem. 44 7365 [16] Sui L, Zhao K et al 2005 Chin. Phys. Lett. 22 1010 [17] Wang H B et al 2007 Chin. Phys. Lett. 24 644 [18] Hou X M et al 2009 Nucleic Acids Res. 37 1400 [19] Liu Z G et al 2010 Micron 41 833 [20] Wei M, Cohen S M, Silverman A P and Lippard S J 2001 J. Biol. Chem. 276 38774 [21] Wiggins P A et al 2006 Nat. Nanotechnol. 1 137 [22] Zuccheri G, Dame R T, Aquila M, Muzzalupo I and Samori B 1998 Appl. Phys. A: Mater. Sci. Process. 66 S585 [23] Garcia R and Perez R 2002 Surf. Sci. Rep. 47 197 [24] Bustamante C et al 1992 Biochemistry 31 22 [25] Pope L H et al 2000 J. Microsc. 199 68 [26] Bouchiat C et al 1999 Biophys. J. 76 409 [27] Rivetti C, Guthold M and Bustamante C 1996 J. Mol. Biol. 264 919 [28] Chen H and Yan J 2008 Phys. Rev. E 77 041907 [29] Yan J, Kawamura R, Marko J F 2005 Phys. Rev. E 71 061905
-
Related Articles
[1] HU Xiao-Rui, CHEN Yong. Binary Darboux Transformation for the Modified Kadomtsev--Petviashvili Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3840-3843. [2] HU Heng-Chun, LOU Sen-Yue. Construction of the Darboux Transformaiton and Solutions to the Modified Nizhnik--Novikov--Veselov Equation [J]. Chin. Phys. Lett., 2004, 21(11). [3] WANG Zun-Jing, CHEN Min, GUO Zeng-Yuan. Modified Transition State Theory for Evaporation and Condensation [J]. Chin. Phys. Lett., 2002, 19(4): 537-539. [4] WEI Chong-de. Local Magnetic Relaxation in High-Temperature Superconductors [J]. Chin. Phys. Lett., 1997, 14(12): 940-942. [5] LOU Sen-yue, CHEN Li-li, WU Qi-xian. New Symmetry Constraints of the Modified Kadomtsev-Petviashvili Equation [J]. Chin. Phys. Lett., 1997, 14(1): 1-4. [6] CHENG Kaijia. A Suggestion to the Designing of Ceramic Superconductors withHigher Transition Temperatures [J]. Chin. Phys. Lett., 1994, 11(6): 376-378. [7] JI Helin, QIN Mengjun, JIN Xin, YAO Xixian, FU Yaoxian. Extended Rate Equation for Flux Motion in High-Tc Superconductors [J]. Chin. Phys. Lett., 1994, 11(6): 369-372. [8] ZHANG Jiefang. Six Sets of Symmetries of the Variable Coefficient Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1994, 11(1): 4-7. [9] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295. [10] SUN Changde. MODIFIED TAKAGIS EQUATION OF X-RAY DIFFRACTION [J]. Chin. Phys. Lett., 1988, 5(11): 505-508.