The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation

  • Received Date: January 31, 2011
  • Published Date: May 31, 2011
  • Extensive calculations on isoscaling behavior with the sequential-decay model GEMINI are performed for the mediate-heavy nuclei in the mass range A=110 and at excitation energies of up to 3 MeV per nucleon. Isoscaling can still be observed after entire−step decays are considered for the light products as in the only first-step decay process case. Comparison between the products after the first-step decay and the ones after entire-step decay demonstrates that multi-step secondary sequential decay strongly influences the isoscaling parameters α, β as well as the fragment isospin distribution. After entire−step decays, the isoscaling parameters α and β are decreased and the fragment isospin distribution can better reproduce the isospin distribution shape as the experimental data.
  • Article Text

  • [1] Lattimer J M et al 1991 Phys. Rev. Lett. 66 2701
    [2] Lattimer J M and Prakash M 2000 Phys. Rep. 333 121
    [3] Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335
    [4] Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325
    [5] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
    [6] Tsang M B et al 2000 Phys. Rev. Lett. 86 5023
    [7] Botvina A S, Lozhkin O V and Trautmann W 2002 Phys. Rev. C 65 044610
    [8] Shetty D V et al 2003 Phys. Rev. C 68 021602(R)
    [9] Souliotis G A et al 2003 Phys. Rev. C 68 024605
    [10] Ono A et al 2003 Phys. Rev. C 68 051601
    [11] Friedman W A 2004 Phys. Rev. C 69 031601(R)
    [12] Veselsky M, Souliotis G A andYennello S J 2004 Phys. Rev. C 69 031602(R)
    [13] Ma Y G et al 2004 Phys. Rev. C 69 064610
    [14] Shetty D V et al 2004 Phys. Rev. C 70 011601(R)
    [15] Geraci E et al 2004 Nucl. Phys. A 732 173
    [16] Tian W D et al 2005 Chin. Phys. Lett. 22 306
    [17] Raduta Ad R 2005 Eur. Phys. J. A 24 85
    [18] Ma Y G et al 2005 Phys. Rev. C 72 064603
    [19] Souliotis G A et al 2006 Phys. Rev. C 73 024606
    [20] Dorso C O et al 2006 Phys. Rev. C 73 044601
    [21] Tian W D, Ma Y G, Cai X Z et al 2007 Phys. Rev. C 76 024607
    Tian W D, Ma Y G, Cai X Z et al 2007 Chin. Phys. Lett. 24 385
    [22] Fang D Q, Ma Y G, Zhong C et al 2007 J. Phys. G 34 2173
    [23] Su Q M, Ma Y G, Tian W D et al 2008 Chin. Phys. Lett. 25 2000
    [24] Galanopoulos S et al 2010 Nucl. Phys. A 837 145
    [25] Veselsky M et al 2010 Nucl. Phys. A 837 163
    [26] Tsang M B et al 2006 Eur. Phys. J. A 30 129
    [27] Shetty D V et al 2005 Phys. Rev. C 71 024602
    [28] Le Fèvre A et al 2005 Phys. Rev. Lett. 94 162701
    [29] Colonna A and Tsang M B 2006 Eur. Phys. J. A 30 165
    [30] Fu Y, Fang D Q, Ma Y G et al 2010 Nucl. Phys. A 834 584c
    Fu Y, Fang D Q, Ma Y G et al 2009 Chin. Phys. Lett. 26 082503
    [31] Charity R J et al 1988 Nucl. Phys. A 483 371 (computer code GEMINI, see http://www. chemistry.wustl.edu/~rc/)
    [32] Rentsch D et al 1993 Phys. Rev. C 48 2789
    [33] Lleres A et al 1993 Phys. Rev. C 48 2753
    [34] Hagel K et al 1994 Phys. Rev. C 50 2017
    [35] Lleres A et al 1994 Phys. Rev. C 50 1973
    [36] Ma Y G et al 2002 Phys. Rev. C 65 051602(R)
    [37] Piantelli S et al 2006 Phys. Rev. C 74 034609
    [38] Mocko M et al 2008 Phys. Rev. C 78 024612
    [39] Amorini A et al 2009 Phys. Rev. Lett. 102 112701
    [40] Gawlikowicz W et al 2010 Phys. Rev. C 81 014604
    [41] Charity R J 2010 Phys. Rev. C 82 014610
    [42] Charity R J 1998 Phys. Rev. C 58 1073

Catalog

    Article views (7) PDF downloads (497) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return