N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation
-
Abstract
The bilinear form of the four-potential isospectral Ablowitz–Ladik (AL) equation is derived by the dependent variable transformation. The N-soliton solutions of the equation are obtained through the Hirota method. Moreover, the double Casoratian solution is found by means of the double Casoratian technique.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202. DOI: 10.1088/0256-307X/28/6/060202
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202. DOI: 10.1088/0256-307X/28/6/060202
|
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202. DOI: 10.1088/0256-307X/28/6/060202
CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202. DOI: 10.1088/0256-307X/28/6/060202
|