Radiative Decay of Proton Colliding with Rb at Low Energies

  • Received Date: March 31, 2010
  • Published Date: February 28, 2011
  • The radiative decay and radiative charge transfer cross sections for H++Rb(5s) collisions are calculated by using the optical potential approach, the semiclassical and the fully quantum-mechanical methods, respectively, for the energy range 10-6–10 eV. The radiative association cross sections are obtained by the cross section differences between the radiative decay and radiative charge transfer processes. The relevant molecular data are calculated from the multi-reference single- and double-excitation configuration interaction approach. The emission spectra at resonant and non-resonant energies are analyzed, then the isolated sharp and broad resonances can be identified by their rotational and vibration quantum numbers.
  • Article Text

  • [1] Courbin C, Allan R J, Salas P and Wahnon P 1990 J. Phys. B 23 3909
    [2] Royer T, Dowek D, Houver J C, Pommier J and Andersen N 1988 Z. Phys. D 10 45
    [3] Zygelman B and Dalgarno A 1988 Phys. Rev. A 38 1877
    [4] Liu C H, Qu Y Z, Zhou Y et al 2009 Phys. Rev. A 79 042706
    [5] Liu C H, Qu Y Z, Wang J G et al 2009 Phys. Lett. A 373 3761
    [6] Liu C H, Qu Y Z, Wang J G et al 2010 Phys. Rev. A 81 012707
    [7] Watanabe A, Dutta C M et al 2002 Phys. Rev. A 66 044701
    [8] Duan L M, Lukin M D, Cirac J I et al 2001 Nature 414 413
    [9] Stancil P C and Zygelman B 1996 Astrophys. J. 472 102
    [10] Zhao L B, Wang J G, Stancil P C et al 2006 J. Phys. B 39 5151
    [11] Bates D R and Mon Not R 1951 Astron. Soc. 111 303
    [12] Buenker R J and Phillips R A 1985 J. Mol. Struct.: Theochem. 123 291
    [13] Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613
    [14] http://physics.nist.gov/PhysRefData/ASD/levelsform.html
    [15] Saha B C and Kumar A 2001 Phys. Rev. A 64 012721
    Magnier S 2006 Chem. Phys. 326 375
    [16] West B W, Lane N F and Cohen J S 1982 Phys. Rev. A 26 3164
  • Related Articles

    [1]Yunjing Gao, Jianda Wu. Quantum magnetism from low-dimensional quantum Ising models with quantum integrability [J]. Chin. Phys. Lett., 2025, 42(4): 047501. doi: 10.1088/0256-307X/42/4/047501
    [2]Srinivasa Rao KARUMURI, Joydeep CHOUDHURY, Nirmal Kumar SARKAR, Ramendu BHATTACHARJEE. Vibrational Spectroscopy of Stretching and Bending Modes of Nickel Tetraphenyl Porphyrin: an Algebraic Approach [J]. Chin. Phys. Lett., 2009, 26(9): 093301. doi: 10.1088/0256-307X/26/9/093301
    [3]GU Shi-Jian. Density-Functional Fidelity Approach to Quantum Phase Transitions [J]. Chin. Phys. Lett., 2009, 26(2): 026401. doi: 10.1088/0256-307X/26/2/026401
    [4]Joydeep Choudhury, Nirmal Kumar Sarkar, Srinivasa Rao Karumuri, Ramendu Bhattacharjee. Vibrational Spectroscopy of CH/CD Stretches in Propadiene: An Algebraic Approach [J]. Chin. Phys. Lett., 2009, 26(2): 020308. doi: 10.1088/0256-307X/26/2/020308
    [5]TIAN Gui-Hua, WANG Shi-Kun, ZHONG Shu-Quan. Approach to a Cauchy Problem in Stability Study of the Schwarzschild Black Hole [J]. Chin. Phys. Lett., 2007, 24(6): 1475-1478.
    [6]YANG Sen, ZHAI Hui. Random Matrix Approach to a Special Kind of Quantum Random Hopping [J]. Chin. Phys. Lett., 2002, 19(5): 628-631.
    [7]CHEN Qing-Hu, WANG Zhuang-Bing, WU Fu-Li, LUO Meng-Bo, YUAN Yong-Hong, JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires [J]. Chin. Phys. Lett., 2001, 18(5): 668-671.
    [8]XU Jing-Bo, ZOU Xu-Bo. Dynamical Algebraic Approach to the Modified Jaynes-CummingsModel [J]. Chin. Phys. Lett., 2001, 18(1): 51-53.
    [9]XU Gong-ou, XING Yong-zhong, YANG Ya-tian. Topological Approach to the Study of Global Stationary Property of Quantum Systems [J]. Chin. Phys. Lett., 1999, 16(2): 82-84.
    [10]CHEN Qing-hu, REN Yu-hang, CAO Yi-gang, JIAO Zheng-kuan. Path Integral Approach for Multi-dimensional Polarons in a Symmetric Quantum Dot [J]. Chin. Phys. Lett., 1998, 15(8): 585-587.

Catalog

    Article views (3) PDF downloads (534) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return