A Denoising Algorithm for Noisy Chaotic Signals Based on the Higher Order Threshold Function in Wavelet-Packet

  • Received Date: December 31, 1899
  • Published Date: January 31, 2011
  • Aiming at the shortage of conventional threshold function in wavelet noise reduction of chaotic signals, we propose a wavelet-packet noise reduction method of chaotic signals based on a new higher order threshold function. The method retains the useful high-frequency information, and the threshold function is continuous and derivable, therefore it is more consistent with the characteristics of the continuous signal. Contrast simulation experiment shows that the effect of noise reduction and the precision of noise reduction of chaotic signals both are improved.
  • Article Text

  • [1] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
    [2] Xu Q and Tian Q 2010 Chin. Phys. Lett. 27 020505
    [3] Willeboordse F H et al 1994 Phys. Rev. Lett. 73 533
    [4] Guo R W et al 2009 Chin. Phys. Lett. 26 090506
    [5] Hu G, Xie F and Qu Z 1997 Phys. Rev. E 56 2738
    [6] Deng K et al 2010 Chin. Phys. B 19 030506
    [7] Kotoulas D et al 2006 IEEE Trans. Signal Process 54 1351
    [8] Xie Z B and Feng J C 2009 Chin. Phys. Lett. 26 030501
    [9] Choon Ki Ahn 2010 Chin. Phys. Lett. 27 010503
    [10] Hu G et al 2006 Visual Computing 22 147
    [11] Stéphane G M 1999 A Wavelet Tour of Signal Processing 2nd edn (San Diego: Academic) p 446
    [12] Donoho D and Johnstone I 1994 Biometrika 81 425
    [13] Ingrid Daubechies 1998 Ten Lectures on Wavelet (New York: Cambridge University) p 129
    [14] Pan Q, Zhang L and Dai G Z 1999 IEEE Trans. Signal Process. 47 3401
    [15] Zhang X P and Desai M D 2001 IEEE Trans. Neural Networks 12 567
  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]DOU Quan-Tao, ZUO Guang-Hong, FANG Hai-Ping. Interaction between a Functionalized Single-Walled Carbon Nanotube and the YAP65WW Protein Domain: a Molecular Dynamics Simulation Study [J]. Chin. Phys. Lett., 2012, 29(6): 068701. doi: 10.1088/0256-307X/29/6/068701
    [3]GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface [J]. Chin. Phys. Lett., 2010, 27(6): 066802. doi: 10.1088/0256-307X/27/6/066802
    [4]LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide [J]. Chin. Phys. Lett., 2010, 27(3): 036501. doi: 10.1088/0256-307X/27/3/036501
    [5]HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites [J]. Chin. Phys. Lett., 2008, 25(8): 2973-2976.
    [6]SUN Tie-Ying, LONG Xing-Gui, WANG Jun, HOU Qing, WU Zhong-Cheng, PENG Shu-Ming, LUO Shun-Zhong. Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals [J]. Chin. Phys. Lett., 2008, 25(5): 1784-1787.
    [7]ZENG Zhao-Yi, CHEN Xiang-Rong, ZHU Jun, HU Cui-E. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2008, 25(1): 230-233.
    [8]ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of [J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
    [9]WANG Ling, NING Xi-Jing. Molecular Dynamics Simulations of Helium Behaviour in Copper Crystals [J]. Chin. Phys. Lett., 2003, 20(9): 1416-1419.
    [10]FENG Xiao-Li, LI Zhi-Xin, GUO Zeng-Yuan. Size Effect of Lattice Thermal Conductivity Across NanoscaleThin Films by Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2001, 18(3): 416-418.

Catalog

    Article views (2) PDF downloads (841) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return