Calculation of Loudspeaker Cabinet Diffraction and Correction

  • Received Date: March 24, 2011
  • Published Date: September 30, 2011
  • A method of calculating the cabinet edge diffractions for loudspeaker driver when mounted in an enclosure is proposed, based on the extended Biot–Tolstoy–Medwin model. Up to the third order, cabinet diffractions are discussed in detail and the diffractive effects on the radiated sound field of the loudspeaker system are quantitatively described, with a correction function built to compensate for the diffractive interference. The method is applied to a practical loudspeaker enclosure that has rectangular facets. The diffractive effects of the cabinet on the forward sound radiation are investigated and predictions of the calculations show quite good agreements with experimental measurements.
  • Article Text

  • [1] Olson H F 1957 Acoustical Engineering (Princeton: Van Nostrand) chap 1 pp 20–24
    [2] Bews R M and Hawksford M J 1986 J. Audio Eng. Soc. 34 771
    [3] Keller J B 1962 J. Opt. Soc. Am. 52 116
    [4] Wright J R 1997 J. Audio Eng. Soc. 45 347
    [5] Vanderkooy J 1991 J. Audio Eng. Soc. 39 923
    [6] Svensson U P and Fred R I 1999 J. Acoust. Soc. Am. 106 2331
    [7] Medwin H 1981 J. Acoust. Soc. Am. 69 1060
    [8] Medwin H, Childs E and Jebsen G M 1982 J. Acoust. Soc. Am. 72 1005
    [9] International Electrotechnical Commission 2003 IEC 60268-5 Sound System Equipment Part 5: Loudspeaker (Geneva: IEC) pp 41–44
  • Related Articles

    [1]Abbagari Souleymanou, Victor K. Kuetche, Thomas B. Bouetou, Timoleon C. Kofane. Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System [J]. Chin. Phys. Lett., 2011, 28(12): 120501. doi: 10.1088/0256-307X/28/12/120501
    [2]XIA Li-Li. Poisson Theory and Inverse Problem in a Controllable Mechanical System [J]. Chin. Phys. Lett., 2011, 28(12): 120202. doi: 10.1088/0256-307X/28/12/120202
    [3]Souleymanou Abbagari, Bouetou Bouetou Thomas, Kuetche Kamgang Victor, Mouna Ferdinand, Timoleon Crepin Kofane. Prolongation Structure Analysis of a Coupled Dispersionless System [J]. Chin. Phys. Lett., 2011, 28(2): 020204. doi: 10.1088/0256-307X/28/2/020204
    [4]YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem? [J]. Chin. Phys. Lett., 2010, 27(12): 124701. doi: 10.1088/0256-307X/27/12/124701
    [5]ZHANG Gang, ZHANG Wei, LIU Zeng-Rong. Synchronization of Coupled Nonidentical Dynamical Systems [J]. Chin. Phys. Lett., 2010, 27(3): 030504. doi: 10.1088/0256-307X/27/3/030504
    [6]Kuetche Kamgang Victor, Gambo Betchewe, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Miscellaneous Rotating Solitary Waves to a Coupled Dispersionless System [J]. Chin. Phys. Lett., 2009, 26(9): 090505. doi: 10.1088/0256-307X/26/9/090505
    [7]Gambo Betchewe, Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Dynamical System Approach to a Coupled Dispersionless System: Localized and Periodic Traveling Waves [J]. Chin. Phys. Lett., 2009, 26(6): 060503. doi: 10.1088/0256-307X/26/6/060503
    [8]LI Jing, CHEN Zhi-De. Squeezing Effect of a Nanomechanical Resonator Coupled to a Two-Level System: an Equilibrium Approach [J]. Chin. Phys. Lett., 2009, 26(3): 038501. doi: 10.1088/0256-307X/26/3/038501
    [9]SUN Hui-Ying, HUANG Xiao-Li, YI Xue Xi. Dynamical Evolution and Entanglement in a Nonlinear Interacting System [J]. Chin. Phys. Lett., 2009, 26(2): 020305. doi: 10.1088/0256-307X/26/2/020305
    [10]HUANG Ling. Rational Solutions in a Coupled Burgers System [J]. Chin. Phys. Lett., 2006, 23(1): 4-6.

Catalog

    Article views (1) PDF downloads (2100) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return