By using the generalized version of the dressing method, we consider a Dirac system. The types of nonlinear evolution equations discussed involve the integrable variable-coefficient Dirac equation and the defocusing nonlinear Schrödinger equation. As an application, their explicit solutions and Lax pairs are given.
SU Ting, WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System[J]. Chin. Phys. Lett., 2010, 27(9): 090203. DOI: 10.1088/0256-307X/27/9/090203
SU Ting, WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System[J]. Chin. Phys. Lett., 2010, 27(9): 090203. DOI: 10.1088/0256-307X/27/9/090203
SU Ting, WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System[J]. Chin. Phys. Lett., 2010, 27(9): 090203. DOI: 10.1088/0256-307X/27/9/090203
SU Ting, WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System[J]. Chin. Phys. Lett., 2010, 27(9): 090203. DOI: 10.1088/0256-307X/27/9/090203