Decomposition of Gauge Potential in Ginzburg-Landau Theory

  • Received Date: April 25, 2010
  • Published Date: July 31, 2010
  • Recently, Liu et al. proposed a so-called extended Anderson-Higgs mechanism by studying the (2+1)-dimensional Ginzburg-Landau model in the pseudogap region of high-Tc superconductor (Phys. Rev. B 65 (2002) 132513). We revisit this problem based on a general decomposition of the U(1) gauge potential. Using the bulk superconductor and superconduct ring as examples, we obtain a simpler expression for the extended Anderson-Higgs mechanism. In the former case we indicate that all the phase field can always be "eaten up'' by the pure gauge term A||. In the latter case, we decompose the phase field as θ(x)=θ1(x)+θ2(x) and find that only the phase field θ1 connected with Anderson-Higgs mechanism can be canceled by the pure-gauge term A||. On the other hand, the remaining phase field θ2 connected with A^is multi-valued, which can induce new physical effects such as A-B effect and flux quantization. It is natural to conclude that there is no longitudinal phase fluctuation effect in high-temperature superconductors since longitudinal phase \theta1 is connected with pure-gauge term.
  • Article Text

  • [1] Anderson P W 1963 Phys. Rev. 130 439
    [2] Higgs P W 1964 Phys. Lett. 12 132
    [3] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
    [4] Kosterlitz J M and Thouless D J 1973 J. Phys. C 662 1181
    [5] Liu G Z and Cheng G 2002 Phys. Rev. B 65 132513
    [6] Nieh H T, Su G and Zhao B H 1995 Phys. Rev. B 51 3760
    [7] Emery V J and Kivelson S A 1995 Nature 374 434
    [8] Franz M and Millis A J 1998 Phys. Rev. B 58 14572
  • Related Articles

    [1]YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models [J]. Chin. Phys. Lett., 2009, 26(8): 089501. doi: 10.1088/0256-307X/26/8/089501
    [2]M. R. Setare. Interacting Holographic Dark Energy in the Scalar Gauss-Bonnet Gravity [J]. Chin. Phys. Lett., 2009, 26(2): 029501. doi: 10.1088/0256-307X/26/2/029501
    [3]Arbab I. Arbab. Viscous Dark Energy Models with Variable G and Λ [J]. Chin. Phys. Lett., 2008, 25(10): 3834-3836.
    [4]WU Xing, ZHU Zong-Hong. Limits from Weak Gravity Conjecture on Chaplygin-Gas-Type Models [J]. Chin. Phys. Lett., 2008, 25(4): 1517-1520.
    [5]ZHANG Cheng-Wu, XU Li-Xin, CHANG Bao-Rong, LIU Hong-Ya. Comparison of Supernovae Datasets Constraints on Dark Energy [J]. Chin. Phys. Lett., 2007, 24(5): 1425-1428.
    [6]WU Pu-Xun, YU Hong-Wei. Observational Constraints on the Unified Dark-Energy--Dark-Matter Model [J]. Chin. Phys. Lett., 2007, 24(3): 843-845.
    [7]DENG Xue-Mei, WU Ya-Bo, ZHAO Guo-Ming. A Parametric Dynamic Model of Dark Energy [J]. Chin. Phys. Lett., 2006, 23(6): 1655-1658.
    [8]WANG Wei, GUI Yuan-Xing, SHAO Ying. Development of the Model of the Generalized Quintom Dark Energy [J]. Chin. Phys. Lett., 2006, 23(3): 762-764.
    [9]GAO Shan. A Conjecture on the Origin of Dark Energy [J]. Chin. Phys. Lett., 2005, 22(3): 783-784.
    [10]CHEN Chi-Yi, SHEN You-Gen. Extra Dimensions and Vacuum Dark Energy Models [J]. Chin. Phys. Lett., 2004, 21(11): 2320-2322.

Catalog

    Article views (4) PDF downloads (720) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return