-
Abstract
The energy levels of holes in a p-type δ-doped GaAs structure under a magnetic field are theoretically calculated within the framework of the effective mass approximation for a uniform acceptor distribution. The electronic structure is calculated by solving the Schrödinger and Poisson equations self-consistently. The effect of the magnetic field on the potential profile changes the degree of the confinement and localization, and thus this behavior can be used to study these systems in regions of interest, without the need to grow many different samples. It is found that the heavy-hole subbands contain many more energy states than the light-hole ones; the population of the heavy-hole levels represents approximately 91% of all the carriers without magnetic field. With increasing magnetic field the total population of the heavy-holes increases and the number of filled states changes. -
References
[1] Schubert E F, Fischer A and Ploog K 1986 IEEE Trans. Electron Devices 33 625 [2] Ploog K, Hauser M and Fischer A 1988 Appl. Phys. A 45 233 [3] Maciel A C, Tatham M, Ryan J F, Worlock J M, Nahory R E, Harbison J P and Florez L T 1990 Surf. Sci. 228 251 [4] Ioriatti L 1990 Phys. Rev. B 41 8340 [5] Egues J C, Barbosa J C, Notari A C, Basmaji P and Ioriatti L 1991 J. Appl. Phys. 70 3678 [6] Degani M H 1991 J. Appl. Phys. 70 4362 [7] Ke M L, Rimmer J S, Hamilton B, Evan J H, Missious M, Singer K E and Zalm P 1992 Phys. Rev. B 45 14114 [8] Osvald J 2004 J. Phys. D: Appl. Phys. 37 2655 [9] Shibli S M, Scolfaro L M, Leite J R, MendonÇa C A C, Plentz F and Meneses A 1992 Appl. Phys. Lett. 60 2895 [10] Ozturk E, Ergun Y, Sari H and Sokmen I 2000 Superlattices and Microstructures 28 35
Ozturk E, Ergun Y, Sari H and Sokmen I 2001 Semicond. Sci. Technol. 16 421
Ozturk E, Ergun Y, Sari H and Sokmen I 2001 Appl. Phys. A 73 749
Ozturk E, Ergun Y, Sari H and Sokmen I 2002 J. Appl. Phys. 91 2118
Ozturk E, Sari H, Ergun Y and Sokmen I 2003 Physica B 334 1[11] Kundrotas J, Cerskus A, Valusis G, Lachab M, Khanna S P, Harrison P and Linfield E H 2008 Acta Phys. Polon. A 113 963 [12] Mei T, Li H, Karunasiri G, Fan W J, Zhang D H, Yoon, S F and Yuan K H 2007 Infrared Phys. Technol. 50 119 [13] Nomura S, Isshiki H, Aoyagi Y and Sugano T 1996 Physica B 227 38 [14] Quivy A A, Sperandio A L, da Silva E C F and Leite J R 1999 J. Cryst. Growth 206 171 [15] Johnson M B, Koenraad P M, van der Vleuten W C, Salemink H W M and Wolter J H 1995 Phys. Rev. Lett. 75 1606 [16] Zhang W M, Halsall M P, Harmer P, Harrison P and Steer M J 2002 J. Appl. Phys. 92 6039 [17] Chang C Y, Lin W, Hsu W C, Wu T S, Chang S Z and Wang C 1991 Jpn. J. Appl. Phys. 30 1158 [18] Kuo T Y, Cunningham J E, Schubert E F, Tsang W T, Chiu T H, Run F and Fonstad C G 1988 J. Appl. Phys. 64 3324 [19] Schubert E F, Cunningham J E and Tsang W T 1987 Solid State Commun. 63 591 [20] Ploog K 1987 J. Cryst. Growth 81 304 [21] Liu D G, Fan J C, Lee C P, Chang K H and Liou D C 1993 J. Appl. Phys. 73 608 [22] Rodriguez-Vargas I and Gaggero-Sager L M 2004 Revista Mexicana de Fisica 50 614 [23] Nakazato K, Blaikie R J and Ahmed H 1994 J. Appl. Phys. 75 5123 [24] Schubert E F 1990 J. Vac. Sci. Technol. A 8 2980 [25] Zrenner A, Koch F, Williams R L, Stradling R A, Ploog K and Weinmann G1988 Semicond. Sci. Technol. 3 1203 [26] Schubert E F, Chiu T H, Cunningham J E, Telland B and Stark J B 1988 J. Electron. Mater. 17 527 [27] Gaggero-Sager L M 2002 Phys. Status Solidi 231 243 [28] Rosa A L, Scolfaro L M R, Sipahi G M, Enderlein R and Leite J R 1998 Microelectron. Engin. 43-44 489 [29] Kasapoglu E and Sokmen I 2005 Physica E 27 198 [30] Asche M, Friedland K J, Kleinert P and Kostial H 1992 Semicond. Sci. Technol. 7 923 [31] Noh J P, Idutsu Y and Otsuka N 2007 J. Crystal Growth 301-302 662 [32] Tripathi V and Kennett M P 2007 Phys. Rev. B 76 115321 [33] Idutsu Y, Noh J P, Shimogishi F and Otsuka N 2006 Phys. Rev. B 73 115306 [34] Tao Z C, Singh M and Puszkarski H 1993 Solid State Commun. 85 361 [35] Ozturk E 2009 Superlattices and Microstructures 46 752 [36] Ozturk E, Bahar M K and Sokmen I 2008 Eur. Phys. J. Appl. Phys. 41 195 [37] Ozturk E and Sokmen I 2008 Chin. Phys. Lett. 25 1415 [38] Ozturk E and Sokmen I 2004 Superlattices and Microstructures 35 95 [39] Kasapoglu E, Sari H and Sokmen I 2001 Superlattices and Microstructures 29 25 [40] Gaggero-Sager L M and Perez-Alvarez R 1996 J. Appl. Phys. 79 3351
-
Related Articles
[1] HU Wen-Juan, XIE Fen-Yan, CHEN Qiang, WENG Jing. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma [J]. Chin. Phys. Lett., 2008, 25(10): 3805-3807. [2] HAO Xiao-Peng, WANG Bao-Yi, YU Run-Sheng, WEI Long, WANG Hui, ZHAO De-Gang, HAO Wei-Chang. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment [J]. Chin. Phys. Lett., 2008, 25(3): 1034-1037. [3] LIN Ying-Bin, YANG Yan-Min, XU Jian-Ping, LIU Xing-Chong, WANGJian-Feng, HUANG Zhi-Gao, ZHANG Feng-Ming, DU You-Wei. Photoluminescence of ZnO and Mn-Doped ZnO Polycrystalline Films Prepared by Plasma Enhanced Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2007, 24(9): 2685-2688. [4] LIN Ying-Bin, LU Zhi-Hai, ZOU Wen-Qin, LU Zhong-Lin, XU Jian-Ping, JI Jian-Ti, LIU Xing-Chong, WANG Jian-Feng, LV Li-Ya, ZHANG Feng-Ming, DU You-Wei, HUANG Zhi-Gao, ZHENG Jian-Guo. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method [J]. Chin. Phys. Lett., 2007, 24(7): 2085-2087. [5] Department of Physics, Lanzhou University, Lanzhou. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2006, 23(12): 3338-3340. [6] YU Wei, WANG Bao-Zhu, LU Wan-Bing, YANG Yan-Bin, HAN Li, FU Guang-Sheng. Growth of Nanocrystalline Silicon Films by Helicon Wave Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2004, 21(7): 1320-1322. [7] LIN Xuan-Ying, HUANG Chuang-Jun, LIN Kui-Xun, YU Yun-Peng, YU Chu-Ying, CHI Ling-Fei. Low-Temperature Growth of Polycrystalline Silicon Films bySiCl4/H2 rf Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2003, 20(10): 1879-1882. [8] WANG Peng-Fei, DING Shi-Jin, ZHANG Wei, ZHANG Jim-Yun, WANG Ji-Tao, WEI William Lee. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2000, 17(12): 912-914. [9] LIU Yi-chun, LIU Chun-guang, CHEN Da-wei, LIU Yu-xue, BAI Yu-bai, LI Tie-jin. Photoluminescence Properties of a-SiC:H Films Grown by Plasma Enhanced Chemical Vapor Deposition from SiH4+C2H2 Gas Mixtures [J]. Chin. Phys. Lett., 1998, 15(11): 837-839. [10] MA Tian-fu, CHEN Kun-ji, DU Jia-fang, XU Jun, LI Wei, HUANG Xin-fan. Blue Light Emission from Hydrogenated Amorphous Silicon CarbidePrepared by Xylene Source in Plasma-Enhanced Chemical Vapour Deposition System [J]. Chin. Phys. Lett., 1996, 13(12): 947-949.