1Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Laboratory of Advanced Materials and Department of Optical Science and Engineering, Fudan University, Shanghai 200433 2Hitachi Global Storage Technologies, San Jose, CA, USA
The dynamic performance of heat assisted magnetic recording (HAMR) on different media is investigated. Signal and signal-to-noise ratio enhancement are achieved in high coercivity perpendicular media with the aid of laser heating. Linear recording density is increased while saturation write current is lowered. Trailing field partial erasure is observed in lower coercivity media with a ring head, which causes signal reduction with increasing write current or application of a laser. Precautions should be taken against partial erasure in overall recording system optimization of HAMR in order to achieve ultrahigh recording density.
LIAO Jia-Lin, WEI Shen-Jin, LI Jing, JIN Qing-Yuan, CHE Xiao-Dong. Heat Assisted Magnetic Recording with Matching Media and Recording Head Field[J]. Chin. Phys. Lett., 2010, 27(6): 068503. DOI: 10.1088/0256-307X/27/6/068503
LIAO Jia-Lin, WEI Shen-Jin, LI Jing, JIN Qing-Yuan, CHE Xiao-Dong. Heat Assisted Magnetic Recording with Matching Media and Recording Head Field[J]. Chin. Phys. Lett., 2010, 27(6): 068503. DOI: 10.1088/0256-307X/27/6/068503
LIAO Jia-Lin, WEI Shen-Jin, LI Jing, JIN Qing-Yuan, CHE Xiao-Dong. Heat Assisted Magnetic Recording with Matching Media and Recording Head Field[J]. Chin. Phys. Lett., 2010, 27(6): 068503. DOI: 10.1088/0256-307X/27/6/068503
LIAO Jia-Lin, WEI Shen-Jin, LI Jing, JIN Qing-Yuan, CHE Xiao-Dong. Heat Assisted Magnetic Recording with Matching Media and Recording Head Field[J]. Chin. Phys. Lett., 2010, 27(6): 068503. DOI: 10.1088/0256-307X/27/6/068503