Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry

  • We theoretically investigate the spin-dependent electron transport properties in a magnetic superlattice (MSL) with broken two-fold symmetry. An abnormal barrier in the MSL can break the two-fold symmetry of the system when it is not located at the two-fold symmetry center. A two-fold symmetry breaking factor is introduced to describe the two-fold symmetry breaking degree. Our numerical calculations show that the transmission, the conductance and the spin polarization are non-trivially dependent on the two-fold symmetry breaking factor. When the factor is large enough, the polarization almost approaches 100% in a proper Fermi energy range. However, for two mutually mirror-symmetric MSLs with the same factor, their polarizations may be either similar or distinct. These features provide some clues to the design and applications of MSL-based spin filters or spin-dependent tunneling electron devices.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return