-
Abstract
The average kinetic energy of 40Ca+ ions is measured by the method of evaporating ions in an rf ion trap. The kinetic energy of the ion 40Ca+ varies from 0.5 eV to 0.2 eV with changing buffer gas pressure from 10-7 mbar to 10-5 mbar. The Brownian motion model is also introduced to calculate the average kinetic energy of the trapped ions. -
References
[1] Ghosh P K 1995 Ion Traps (Oxford: Clarendon) [2] Prestage J D, Dick G L and Maleki L 1992 IEEE Trans. Instrum. Meas. 40 132 [3] Prasad S R, Sevugarajan S, Vikram A S, Paul J and Dnyaneshwar G 2003 Paul Trap Mass Spectrometers (Bangalore: Indian Institute of Science) [4] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091 [5] Itano W M, Bergquist J C, Bollinger J J and Wineland D J 1995 Physica Scripta T59 106 [6] Goeringer D E and Mcluckey S A 1996 J. Chem. Phys. 104 2214 [7] She L, Wang W M, Bai L, Sun H Y, Zhu X W, Li J M and Gao K L 2008 Chin. Phys. Lett. 25 1653 [8] Major F G and Dehmelt H G 1968 Phys. Rev. 170 91 [9] Schaaf H, Schmeling U and Werth G 1981 Appl. Phys. 25 249 [10] Moriwaki Y, Tachikawa M, Maeno Y and Shimizu T 1992 Jpn. J. Appl. Phys. 31 L1640 [11] Vedel F, André J, Vedel M and Brincourt G 1983 Phys. Rev. A 27 2321 [12] Vedel F and Vedel M 1992 J. Mod. Opt. 39 431 [13] Lunney M D N, Buchinger F and Moore R B 1992 J. Mod. Opt. 39 349 [14] Cutler L S, Flory C A, Giffard R P and McGuire M D 1986 Appl. Phys. B 39 251 [15] Dehmelt H G 1967 Adv. Atom. Mol. Phys. 3 53 [16] Church D 1988 Phys. Rev. A 37 277 [17] Mikosch J, Fruhling U, Trippel S, Schwalm D, Weidemuller M and Wester R 2007 Phys. Rev. Lett. 98 223001 [18] Blatt R, Zoller P, Holzmuller G and Siemers I 1986 Z. Phys. D 4 121 [19] Gao K L, Nie Z X, Jiang Y R and Li J M 2003 Phys. Rev. A 67 022702 [20] Church D A and Dehmelt H G 1969 J. Appl. Phys. 40 3421 [21] Blumel R, Kappler C, Quint W and Walther H 1989 Phys. Rev. A 40 808 [22] March R E and Todd J F J 1989 Chemical Analysis Series: Quadrupole Ion Trap Mass Spectrometry (New Jersey: John Wiley) vol 165 p 88
-
Related Articles
[1] WEN Wu, SHEN Hong. K and K* Exchange Effects in Lambda Hypernuclei [J]. Chin. Phys. Lett., 2010, 27(4): 042101. doi: 10.1088/0256-307X/27/4/042101 [2] YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models [J]. Chin. Phys. Lett., 2009, 26(8): 089501. doi: 10.1088/0256-307X/26/8/089501 [3] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics [J]. Chin. Phys. Lett., 2008, 25(4): 1343-1346. [4] YANG Rong-Jia, ZHANG Shuang-Nan. Theoretical Constraint on Purely Kinetic k-Essence [J]. Chin. Phys. Lett., 2008, 25(1): 344-346. [5] HUANG Yong-Sheng, WANG Nai-Yan, DUAN Xiao-Jiao, LAN Xiao-Fei, TAN Zhi-Xin, TANG Xiu-Zhang, HE Ye-Xi. Neutron Generation and Kinetic Energy of Expanding Laser Plasmas [J]. Chin. Phys. Lett., 2007, 24(10): 2792-2795. [6] GAO Zhe. A New Kinetic Mode Driven by Electron Temperature Gradient [J]. Chin. Phys. Lett., 2004, 21(5): 881-883. [7] GUO Hua, ZHOU Ran, LIU Yu-Xin, LIU Bo, LI Xi-Guo. In-Medium K+ and K- Production and K- Condensation in Supernova Matter [J]. Chin. Phys. Lett., 2004, 21(5): 817-820. [8] ZHENG Xiao-Ping, LI Jia-Rong. Covariant Perturbation Theory of Non-Abelian Kinetic Theory [J]. Chin. Phys. Lett., 2002, 19(1): 23-25. [9] WANG Shaofeng. Existence of Localized Modes in a Purely Anharmonic Chain [J]. Chin. Phys. Lett., 1995, 12(2): 95-97. [10] HU Xiwei. A New Turbulent Collision Integral in Plasma Kinetic Equation [J]. Chin. Phys. Lett., 1992, 9(4): 183-186.