-
Abstract
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction. -
References
[1] Avouris P, Chen Z H and Perebeinos V 2007 Nature Nanotechnol. 2 605 [2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [3] Han M Y,Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 [4] Chen Z H, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228 [5] Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S and Kim P 2007 Phys. Rev. Lett. 99 166804 [6] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229 [7] Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803 [8] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [9] Jayasekera T and Mintmire J W 2007 Nanotechno. 18 424033 [10] Rosales L, Orellana P, Barticevic Z and Pacheco M 2008 {Microelectr. J.} 39 537 [11] Andriotis A N and Menon M 2008 Appl. Phys. Lett. 92 042115 [12] Chen Yuan Ping, Xie Yue E, Sun L Z and Zhong Jianxin 2008 Appl. Phys. Lett. 93 092104 [13] OuYang Fangping, Xiao J, Guo R, Zhang H and Xu H 2009 Nanotechno. 20 055202 [14] Hong Seokmin, Yoon Yongki and Guo J 2008 Appl. Phys. Lett. 92 083107 [15] Jia Xiaoting, Hofmann M, Meunier V et al 2009 Science 323 1701 [16] Xu H, Heinzel T, Evaldsson M and Zozoulenko I V 2008 Phys. Rev. B 77 245401 [17] Evaldsson M, Zozoulenko I V, Xu H and Heinzel T 2008 Phys. Rev. B 78 161407 [18] Rosales L, Pacheco M, Barticevic Z, Latgé A and Orellana P 2008 Nanotechnology 19 065402 [19] Rosales L, Pacheco M, Barticevic Z and Orellana P 2008 Microelectr. J. 39 1233 [20] Shi L P and Xiong S J 2009 Chin. Phys. Lett. 26 067103 [21] Zârbo L P and Nikolic B K 2007 Europhys. Lett. 80 47001 [22] Todd K, Chou H T, Amasha S and Goldhaber-Gordon D 2009 Nano. Lett. 9 416 -
Related Articles
[1] WANG Gui-Qiang, HUANG Cong-Cong, XING Wei, ZHUO Shu-Ping. Hierarchical Porous Carbon Counter Electrode for Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2011, 28(3): 038801. doi: 10.1088/0256-307X/28/3/038801 [2] XU Wei-Wei, HU Lin-Hua, DAI Song-Yuan, ZHANG Chang-Neng, LUO Xiang-Dong, JING Wei-Ping. A Study on Porosity Distribution in Nanoporous TiO_2 Photoelectrodes for Output Performance of Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2010, 27(3): 038202. doi: 10.1088/0256-307X/27/3/038202 [3] ZHOU Yan-Fang, XIANG Wan-Chun, FANG Shi-Bi, CHEN Shen, ZHOU Xiao-Wen, ZHANG Jing-Bo, LIN Yuan. Effect of Poly(Ether Urethane) Introduction on the Performance of Polymer Electrolyte for All-Solid-State Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2009, 26(12): 128201. doi: 10.1088/0256-307X/26/12/128201 [4] ZHANG Yong-Zhe, WU Li-Hui, LIU Yan-Ping, XIE Er-Qing, YAN De, CHEN Jiang-Tao. Preparation of ZnO Nanospheres and Their Applications in Dye-Sensitized Solar Cells [J]. Chin. Phys. Lett., 2009, 26(3): 038201. doi: 10.1088/0256-307X/26/3/038201 [5] ZHAO Hui, YIN Xiong, LI Heng, LIN Yuan, WENG Yu-Xiang. Explanation of Effect of Added Water on Dye-Sensitized Nanocrystalline TiO2 Solar Cell: Correlation between Performance and Carrier Relaxation Kinetics [J]. Chin. Phys. Lett., 2007, 24(11): 3272-3275. [6] LIU Xi-Zhe, HUANG Zhen, LI Ke-Xin, LI Hong, LI Dong-Mei, CHEN Li-Quan, MENG Qing-Bo. Recombination Reduction in Dye-Sensitized Solar Cells by Screen-Printed TiO2 Underlayers [J]. Chin. Phys. Lett., 2006, 23(9): 2606-2608. [7] HU Lin-Hua, DAI Song-Yuan, WANG Kong-Jia. Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules [J]. Chin. Phys. Lett., 2005, 22(2): 493-495. [8] ZENG Long-Yue, DAI Song-Yuan, WANG Kong-Jia, PAN Xu, SHI Cheng-Wu, GUO Li. Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO2 Films Treated by Titanium Tetrachloride [J]. Chin. Phys. Lett., 2004, 21(9): 1835-1837. [9] LIU Xi-Zhe, MENG Qing-Bo, GAO Chun-Xiao, XUE Bo-Fei, WANG Hong-Xia, CHEN Li-Quan, O. Sato, A. Fujishima. Optical Design of Dye-Sensitized Nanocrystalline Solar Cells [J]. Chin. Phys. Lett., 2004, 21(7): 1384-1387. [10] DAI Song-Yuan, WANG Kong-Jia. Optimum Nanoporous TiO2 Film and Its Application to Dye-sensitized Solar Cell [J]. Chin. Phys. Lett., 2003, 20(6): 953-955.