Ground State Eigenfunction of Spheroidal Wave Functions

  • Received Date: December 09, 2009
  • Published Date: March 31, 2010
  • We study the spin-weighted spheroidal wave functions in the case of s=m=0. Their eigenvalue problem is investigated by the perturbation method in supersymmetric quantum mechanics. In the first three terms of parameter α=a2w2, the ground eigenvalue and eigenfunction are obtained. The obtained ground eigenfunction is elegantly in closed forms. These results are new and very useful for the application of the spheroidal wave functions.
  • Article Text

  • [1] Flammer C 1956 Spheroidal Wave Functions (Stanford, CA: Stanford University)
    [2] Stratton J A, Morse J P M, Chu L J, Little J D C and Corbato F J 1956 Spheroidal Wave Functions (New York: John Wiley and Sons Inc.)
    [3] Li L W, Kang X K and Leong M S 2002 Spheroidal Wave Functions in Electromagnetic Theory (New York: John Wiley and Sons, Inc.)
    [4] Teukolsky S A 1972 Phys. Rev. Lett. 29 1114
    Teukolsky S A 1973 {J. Astrophys.} 185 {635}
    [5] Slepian D and Pollak H O 1961 Bell. Syst. Technol. J. 40 43
    [6] Caldwell J 1988 J. Phys. A 21 3685
    [7] Hodge D B 1970 J. Math. Phys . 11 2308
    [8] Sinha B P and MacPhie R H 1975 J. Math. Phys. 16 2378
    [9] Falloon P E, Abbott P C and Wang J B math-ph/0212051
    Berti E, Cardoso V and Casals M 2006 Phys. Rev. D 73 {024013}
    Berti E, Cardoso V, Kokkotas K D and Onozawa H 2003 Phys. Rev. D 68 {124018}
    Berti E, Cardoso V and Casals M 2005 gr-qc/0511111 v4
    [10] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
    [11] Dutt R, Khare A and Sukhatme U 1988 Am. J. Phys. 56 163
    [12] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
    [13] Tian G H and Zhong S Q 2009 quant-ph/0906.4685v2
  • Related Articles

    [1]WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media [J]. Chin. Phys. Lett., 2012, 29(6): 064208. doi: 10.1088/0256-307X/29/6/064208
    [2]ZHOU Liang, DUAN Kai-Liang. Phases in a General Chaotic Three-Coupled-Laser Array [J]. Chin. Phys. Lett., 2012, 29(4): 044201. doi: 10.1088/0256-307X/29/4/044201
    [3]LU Ming-Zhu, LIU Xue-Jin, SHI Yu, KANG Yan-Ni, GUAN Yu-Bo, WAN Ming-Xi. Propagation of Shear Waves Generated by Acoustic Radiation Force in Nondissipative Inhomogeneous Media [J]. Chin. Phys. Lett., 2012, 29(1): 014301. doi: 10.1088/0256-307X/29/1/014301
    [4]YANG Zhen-Jun, MA Xue-Kai, ZHENG Yi-Zhou, GAO Xing-Hui, LU Da-Quan, HU Wei. Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response [J]. Chin. Phys. Lett., 2011, 28(7): 074213. doi: 10.1088/0256-307X/28/7/074213
    [5]LIN Zhi-Wei, XU Xin, ZHANG Xiao-Juan, FANG Guang-You. An Inverse Electromagnetic Scattering Method for One-Dimensional Inhomogeneous Media [J]. Chin. Phys. Lett., 2011, 28(1): 014101. doi: 10.1088/0256-307X/28/1/014101
    [6]XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas [J]. Chin. Phys. Lett., 2010, 27(4): 045201. doi: 10.1088/0256-307X/27/4/045201
    [7]ZHANG Xiao-Dan, WANG Zhen, ZHAO Pin-Dong. Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems [J]. Chin. Phys. Lett., 2008, 25(2): 397-400.
    [8]M. Siddiq, M. Hassan. From Bäcklund Transformation to a Linear System of Sine-Gordon Theory in Superspace [J]. Chin. Phys. Lett., 2005, 22(7): 1567-1569.
    [9]SHE Wei-Long, ZHENG Xi-Guang, NI Xiao-Hui, GUO Hong. A Vector Theory on Spatial Solitons in Kerr Media [J]. Chin. Phys. Lett., 2001, 18(10): 1346-1349.
    [10]SHANG Erchang, WANG Yunyu. ON THE CRITERION OF ADIABATICITY IN THE COUPLED MODE THEORY [J]. Chin. Phys. Lett., 1986, 3(4): 153-156.

Catalog

    Article views (2) PDF downloads (544) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return