The Renormalized Equation of State and Quark Star

  • Received Date: August 04, 2010
  • Published Date: November 30, 2010
  • By means of the EOS of QCD at zero temperature and finite quark chemical potential we proposed [Phys. Rev. D 78 (2008) 054001] in the framework of rainbow-ladder approximation of Dyson–Schwinger approach, we investigate the structure of quark star and its property. It is found that the mass-radius relation in our model is very different from that of usual quark star models, but similar to neutron star models. The obtained mass of quark star is about 1.75Mʘ ∼ 2.2Mʘ. The obtained radius of quark star is 2226 km, which is obviously larger than the results in other models. The reason for this discrepancy is analyzed.
  • Article Text

  • [1] Witten E 1984 Phys. Rev. D 30 272
    [2] Farhi E and Jaffe R L 1984 Phys. Rev. D 30 2379
    [3] Alcock C et al 1986 Astrophys. J. 310 261
    [4] Haensel P et al 1986 Astron. Astrophys. 160 121
    [5] Hanauske M et al 2001 Phys. Rev. D 64 043005
    [6] Glendenning N K and Kettner C 2000 Astron. Astrophys. 353 L9
    [7] Dey M, Bombaci I et al 1998 Phys. Lett. B 438 123.
    [8] Prakash M, Baron E and Prakash M 1990 Phys. Lett. B 243 175
    [9] Steiner A, Prakash M and Lattimer J M 2000 Phys. Lett. B 486 239
    [10] Glendenning N K 2000 Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (New York: Springer)
    [11] Alford M and Reddy S 2003 Phys. Rev. D 67 074024
    [12] Rehberg P, Klevansky S P and Hüfner J 1996 Phys. Rev. C 53 410
    [13] Rüster S B and Rischke D H 2004 Phys. Rev. D 69 045011
    [14] Fraga E S et al 2001 Phys. Rev. D 63 121702
    [15] Zdunik J L 2000 Astron. Astrophys. 359 311
    [16] Harko T and Cheng K S 2002 Astron. Astrophys. 385 947
    [17] Zong H S and Sun W M 2008 Phys. Rev. D 78 054001
    [18] Roberts C D and Williams A G 1994 Prog. Part. Nucl. Phys. 33 477
    [19] Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1 1
    [20] Maris P and Roberts C D 2003 Int. J. Mod. Phys. E 12 297
    [21] Alkofer R and Smekal L Von 2001 Phys. Rep. 353 281
    [22] Zong H S et al 2005 Phys. Rev. C 71 015205
    [23] Hou F Y et al 2005 Phys. Rev. C 72 034901
    [24] Alkofer R et al 2004 Phys. Rev. D 70 014014
    [25] Halasz M A et al 1998 Phys. Rev. D 58 096007
    [26] Blaschke D et al 1999 Phys. Lett. B 450 207
    [27] Peshier A, Kämpfer B and Soff G 2000 Phys. Rev. C 61 045203
    [28] Schertler K, Greiner C, Schaffner-Bielich J and Thoma M H 2000 Nucl. Phys. A 677 463
    [29] Özel F 2006 Nature 441 1115
    [30] Alford M and Braby M 2005 Astrophys. J. 629 969
    [31] Lattimer J M and Prakash M 2001 Astrophys. J. 550 426
    [32] Bublla M et al 2004 Phys. Lett. B 595 36
  • Related Articles

    [1]LIU Yuan, JIA Ya-Fei, LI Wei-Dong. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential [J]. Chin. Phys. Lett., 2012, 29(4): 040304. doi: 10.1088/0256-307X/29/4/040304
    [2]HAO Ya-Jiang. Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap [J]. Chin. Phys. Lett., 2011, 28(1): 010302. doi: 10.1088/0256-307X/28/1/010302
    [3]YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas [J]. Chin. Phys. Lett., 2010, 27(8): 080305. doi: 10.1088/0256-307X/27/8/080305
    [4]XIONG De-Zhi, CHEN Hai-Xia, WANG Peng-Jun, YU Xu-Dong, GAO Feng, ZHANG Jing. Quantum Degenerate Fermi--Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap [J]. Chin. Phys. Lett., 2008, 25(3): 843-846.
    [5]ZHANG Peng-Fei, ZHANG Hai-Chao, XU Xin-Ping, WANG Yu-Zhu. Monte Carlo Simulation of Cooling Induced by Parametric Resonance [J]. Chin. Phys. Lett., 2008, 25(1): 89-92.
    [6]WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel [J]. Chin. Phys. Lett., 2007, 24(10): 2898-2901.
    [7]MA Yong-Li. Phase Diagram and Phase Separation of a Trapped Interacting Bose--Fermi Gas Mixture [J]. Chin. Phys. Lett., 2004, 21(12): 2355-2358.
    [8]LIU Rang-Su, DONG Ke-Jun, LI Ji-Yon, YU Ai-Bing, ZOU Rui-Ping. Molecular Dynamics Simulation of Microstructure Transitions in a Large-Scale Liquid Metal Al System During Rapid Cooling Processes [J]. Chin. Phys. Lett., 2002, 19(8): 1144-1147.
    [9]LIU Chang-Song, ZHU Zhen-Gang, XIA Jun-Chao, SUN De-Yan. Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation [J]. Chin. Phys. Lett., 2000, 17(1): 34-36.
    [10]CHEN Yixin, NI Guangjiong. DIRAC-BERGMANN FORMALISM OF THE FERMI-BOSE TRANSMUTATION IN (2+1)-DIMENSIONS [J]. Chin. Phys. Lett., 1990, 7(10): 433-436.

Catalog

    Article views (1) PDF downloads (656) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return