New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrödinger Equation with an External Potential

  • Received Date: June 05, 2009
  • Published Date: December 31, 2009
  • By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schrödinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schröinger equation with an external potential can be found.
  • Article Text

  • [1]
    Zhu J M and LIU Y L 2009 Commun. Theor. Phys. 51 391

    Google Scholar

    [2]
    Wang Zh and Zhang H Q 2007 Applied Mathematics andComputation 186 693

    Google Scholar

    [3]
    Abdou MA 2007 Chaos, Solitons \& Fractals 311 95

    Google Scholar

    [4]
    Liu J B, Lei Y and Yang K Q 2004 Phys. Lett. A 325 268

    Google Scholar

    [5]
    L J B and Yang K Q 2004 Chaos, Solitons \& Fractals 22 111

    Google Scholar

    [6]
    Malfliet W 1996 Physica Scripta 54 563

    Google Scholar

    [7]
    Malfliet W 1996 Physica Scripta 54 569

    Google Scholar

    [8]
    Zhang Sh 2007 Chaos, Solitons \& Fractals 324 1375

    Google Scholar

    [9]
    Sirendaoreji 2007 Phys. Lett. A 363 440

    Google Scholar

    [10]
    Sirendaoreji 2007 Chaos, Solitons \& Fractals 31 943

    Google Scholar

    [11]
    Sirendaoreji 2006 Phys. Lett. A 356 124

    Google Scholar

    [12]
    Sirendaoreji and Sun J 2003 Phys. Lett. A 309387

    Google Scholar

    [13]
    Wazwaz A M 2006 Chaos, Solitons \& Fractals 28 1005

    Google Scholar

    [14]
    Wazwaz A M 2006 Chaos, Solitons \& Fractals 28 127

    Google Scholar

    [15]
    Wazwaz A M 2005 Chaos, Solitons \& Fractals 25 55

    Google Scholar

    [16]
    Wazwaz A M 2005 Appl. Math. Comput. 167 1179

    Google Scholar

    [17]
    Zhou Y B, Wang M L and Wang Y M 2003 Phys. Lett. A 308 313

    Google Scholar

    [18]
    Zhou Y B, Wang M L and Miao T D 2004 Phys. Lett. A 323 77

    Google Scholar

    [19]
    Wang M L 1996 Phys. Lett. A 216 67

    Google Scholar

    [20]
    Wang M L 1995 Phys. Lett. A 199 69

    Google Scholar

    [21]
    Yu Y X, Wang Q and Zhang H Q 2005 Chaos, Solitons\& Fractals 26 1415

    Google Scholar

    [22]
    Zhang H Q 2007 Chaos, Solitons \& Fractals 32 653

    Google Scholar

    [23]
    Bangsoo J 2008 Chaos, Solitons \& Fractals 371372

    Google Scholar

    [24]
    Belmonte-Beitia and Cuevas 2009 J. Phys. A: Math.Theor. 42 11

    Google Scholar

    [25]
    Zhao Y, Zhang S L and Lou S Y 2009 Chin. Phys. Lett. 26 100201

    Google Scholar

    [26]
    You F C, Zhang J and HAO H H 2009 Chin. Phys. Lett. 26 090201

    Google Scholar

    [27]
    Shen M 2009 Chin. Phys. Lett. 26 060401

    Google Scholar

  • Related Articles

    [1]SHI Run-Hua, HUANG Liu-Sheng, YANG Wei, ZHONG Hong. A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements [J]. Chin. Phys. Lett., 2011, 28(5): 050303. doi: 10.1088/0256-307X/28/5/050303
    [2]GAO Fei, QIN Su-Juan, GUO Fen-Zhuo, WEN Qiao-Yan. Cryptanalysis of Quantum Secure Direct Communication and Authentication Scheme via Bell States [J]. Chin. Phys. Lett., 2011, 28(2): 020303. doi: 10.1088/0256-307X/28/2/020303
    [3]LV Dan-Dan, LU Hong, YU Ya-Fei, FENG Xun-Li, ZHANG Zhi-Ming. Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics [J]. Chin. Phys. Lett., 2010, 27(2): 020302. doi: 10.1088/0256-307X/27/2/020302
    [4]SONG Ke-Hui. Scheme for Generating Cluster States with Charge Qubits in a Cavity [J]. Chin. Phys. Lett., 2009, 26(12): 120302. doi: 10.1088/0256-307X/26/12/120302
    [5]LI Peng-Bo, GU Ying, GONG Qi-Huang, GUO Guang-Can. A Scheme for Atomic Entangled States and Quantum Gate Operations in Cavity QED [J]. Chin. Phys. Lett., 2009, 26(3): 030301. doi: 10.1088/0256-307X/26/3/030301
    [6]ZHANG Da-Wei, SHAO Xiao-Qiang, ZHU Ai-Dong. Quantum Logic Network for Cloning a State Near a Given One Based on Cavity QED [J]. Chin. Phys. Lett., 2008, 25(6): 1954-1956.
    [7]GAO Ting, YAN Feng-Li, WANG Zhi-Xi. Probabilistic Cloning and Quantum Computation [J]. Chin. Phys. Lett., 2004, 21(6): 995-998.
    [8]QIN Tao, GAO Ke-Lin. A Robust Scheme for Two-Qubit Grover Quantum Search Alogrithm Based on the Motional and Internal States of a Single Cold Trapped Ion [J]. Chin. Phys. Lett., 2003, 20(11): 1910-1912.
    [9]DUAN Lu-ming, GUO Guang-can. Scheme for Reducing Decoherence in Quantum Computer Memory by Transformation to the Coherence-Preserving States [J]. Chin. Phys. Lett., 1997, 14(7): 488-491.
    [10]GUO Guang-can, ZHENG Shi-biao. A Scheme for Preparing Schrödinger Cat States with Controllable Manners [J]. Chin. Phys. Lett., 1997, 14(6): 424-427.

Catalog

    Article views (14) PDF downloads (2059) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return