New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrödinger Equation with an External Potential
-
Abstract
By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schrödinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schröinger equation with an external potential can be found. -
References
[1] Zhu J M and LIU Y L 2009 Commun. Theor. Phys. 51 391[2] Wang Zh and Zhang H Q 2007 Applied Mathematics andComputation 186 693[3] Abdou MA 2007 Chaos, Solitons \& Fractals 311 95[4] Liu J B, Lei Y and Yang K Q 2004 Phys. Lett. A 325 268[5] L J B and Yang K Q 2004 Chaos, Solitons \& Fractals 22 111[6] Malfliet W 1996 Physica Scripta 54 563[7] Malfliet W 1996 Physica Scripta 54 569[8] Zhang Sh 2007 Chaos, Solitons \& Fractals 324 1375[9] Sirendaoreji 2007 Phys. Lett. A 363 440[10] Sirendaoreji 2007 Chaos, Solitons \& Fractals 31 943[11] Sirendaoreji 2006 Phys. Lett. A 356 124[12] Sirendaoreji and Sun J 2003 Phys. Lett. A 309387[13] Wazwaz A M 2006 Chaos, Solitons \& Fractals 28 1005[14] Wazwaz A M 2006 Chaos, Solitons \& Fractals 28 127[15] Wazwaz A M 2005 Chaos, Solitons \& Fractals 25 55[16] Wazwaz A M 2005 Appl. Math. Comput. 167 1179[17] Zhou Y B, Wang M L and Wang Y M 2003 Phys. Lett. A 308 313[18] Zhou Y B, Wang M L and Miao T D 2004 Phys. Lett. A 323 77[19] Wang M L 1996 Phys. Lett. A 216 67[20] Wang M L 1995 Phys. Lett. A 199 69[21] Yu Y X, Wang Q and Zhang H Q 2005 Chaos, Solitons\& Fractals 26 1415[22] Zhang H Q 2007 Chaos, Solitons \& Fractals 32 653[23] Bangsoo J 2008 Chaos, Solitons \& Fractals 371372[24] Belmonte-Beitia and Cuevas 2009 J. Phys. A: Math.Theor. 42 11[25] Zhao Y, Zhang S L and Lou S Y 2009 Chin. Phys. Lett. 26 100201[26] You F C, Zhang J and HAO H H 2009 Chin. Phys. Lett. 26 090201[27] Shen M 2009 Chin. Phys. Lett. 26 060401 -
Related Articles