Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass

  • Received Date: February 02, 2009
  • Published Date: July 31, 2009
  • Multiferroic behavior in an isotropic Heisenberg spin glass with Gaussian random fields, incorporated by magnetoelectric coupling derived from the Landau symmetry argument, are investigated. Electric dipole glass transitions at finite temperature, due to coupling, are demonstrated by Monte Carlo simulation. This electric dipole glass state is solely ascribed to the coupling term with chiral symmetry of the magnetization, while the term associated with the spatial derivative of the squared magnetization has no contribution.
  • Article Text

  • [1] Kimura T et al 2003 Nature 426 55
    [2] Khomskii D I 2006 J. Magn. Magn. Mater. 306 1
    [3] Lawes G et al 2005 Phys. Rev. Lett. 95087205
    [4] Eerenstein W et al 2006 Nature 442 759
    [5] Cheong S W and Mostovoy M 2007 Nature Mater. 613
    [6] Gajek M et al 2007 Nature Mater. 6 296
    [7] Betouras J J et al 2007 Phys. Rev. Lett. 98257602
    [8] Blake G R et al 2005 Phys. Rev. B 71 214402
    [9] Chapon L C et al 2006 Phys. Rev. Lett. 96097601
    [10] Okamoto J et al 2007 Phys. Rev. Lett. 98157202
    [11] Kawamura H and Tanemura M 1987 Phys. Rev. B 36 7177
    [12] Kawamura H and Li M S 2001 Phys. Rev. Lett. 87 187204
    [13] Lee L W and Young A P 2003 Phys. Rev. Lett. 90 227203
    [14] Campos I et al 2006 Phys. Rev. Lett. 97217204
    [15] Beath A D and Ryan D H 2007 Phys. Rev. B 76064410 Parisi G and Rizzo T 2008 Phys. Rev. Lett. 101117205 Viet D X et al 2009 Phys. Rev. Lett. 102027202
    [16] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
    [17] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
    [18] Miyataket Y, Yamamotof M, Kim J J, Toyonaga M and Nagai O1986 J. Phys. C: Solid State Phys. 19 2539
    [19] Katsura H et al 2005 Phys. Rev. Lett. 95057205
  • Related Articles

    [1]X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models [J]. Chin. Phys. Lett., 2022, 39(6): 067502. doi: 10.1088/0256-307X/39/6/067502
    [2]TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation [J]. Chin. Phys. Lett., 2009, 26(6): 060501. doi: 10.1088/0256-307X/26/6/060501
    [3]LIU Zheng-Feng, WANG Xiao-Hong. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique [J]. Chin. Phys. Lett., 2008, 25(2): 604-607.
    [4]LIN Ming-Xi, QI Sheng-Wen, LIU Yu-Liang. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System [J]. Chin. Phys. Lett., 2006, 23(11): 3076-3079.
    [5]WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model [J]. Chin. Phys. Lett., 2006, 23(2): 305-308.
    [6]SONG Bo, WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model [J]. Chin. Phys. Lett., 2003, 20(2): 287-289.
    [7]SUN Gang, CHU Qian-Jin. Phase Diagram of the 2-Dimensional Ising Model with DipolarInteraction [J]. Chin. Phys. Lett., 2001, 18(4): 491-494.
    [8]YAN Xiao-hong, ZHANG Li-de, DUAN Zhu-ping, YANG Qi-bin. Renormalization Group Approach on Nanostructured Systems [J]. Chin. Phys. Lett., 1997, 14(4): 291-294.
    [9]YAN Xiaohong, YOU Jianqiang, YAN Jiaren, ZHONG Jianxin. Renormalization Group on the Aperiodic Hamiltonian [J]. Chin. Phys. Lett., 1992, 9(11): 623-625.
    [10]TAN Weichao, YANG Chuliang. RENORMALIZATION GROUP METHOD FOR CALCULATING THE LOCALIZATION LENGTH OF COUPLED DISORDERED CHAINS [J]. Chin. Phys. Lett., 1989, 6(5): 213-216.

Catalog

    Article views (0) PDF downloads (559) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return