Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature
-
Abstract
Controlled evolution of silicon nanocone arrays induced by Ar+ sputtering at room temperature, using the coating carbon as a mask, is demonstrated. The investigation of scanning electron microscopy indicates that the morphology of silicon nanostructures can be controlled by adjusting the thickness of the coating carbon film. Increasing the thickness of the coating carbon film from 50-60nm, 250-300nm and 750-800nm to 1500nm, the morphologies of silicon nanostructures are transformed from smooth surface ripple, coarse surface ripple and surface ripple with densely distributed nanocones to nanocone arrays with a high density of about 1×109-2×109 cm-2.
Article Text
-
-
-
About This Article
Cite this article:
LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 056102. DOI: 10.1088/0256-307X/26/5/056102
LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 056102. DOI: 10.1088/0256-307X/26/5/056102
|
LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 056102. DOI: 10.1088/0256-307X/26/5/056102
LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 056102. DOI: 10.1088/0256-307X/26/5/056102
|