Ultrasonic Vibration Suspends Large Pendant Drops
-
Abstract
A stationary substrate can suspend only small pendant drops even with excellent wetting ability because of gravity. We report the suspension of large pendant water drops by a copper substrate that vibrates ultrasonically with a frequency of 22kHz. The mass of the largest pendant drop suspended
by the vibrating substrate reaches 1.1g, which is 9 times that by the same stationary substrate. The pendant drop deforms drastically and quickly at both the beginning and the end of the vibration procedure. As the vibration power increases, the contact area between the drop and substrate expands and the drop height shrinks accordingly. Theoretical analysis indicates that the Bernoulli pressure induced by ultrasonic vibration may contribute strongly to enhancing the suspensibility of pendant drops.
Article Text
-
-
-
About This Article
Cite this article:
HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 054301. DOI: 10.1088/0256-307X/26/5/054301
HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 054301. DOI: 10.1088/0256-307X/26/5/054301
|
HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 054301. DOI: 10.1088/0256-307X/26/5/054301
HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 054301. DOI: 10.1088/0256-307X/26/5/054301
|