Group Classification and Exact Solutions of a Class of Variable Coefficient Nonlinear Wave Equations

  • Received Date: August 31, 2008
  • Published Date: April 30, 2009
  • Complete group classification of a class of variable coefficient (1+1)-dimensional wave equations is performed. The possible additional equivalence transformations between equations from the class under consideration and the conditional equivalence groups are also investigated. These allow simplification of the results of the classification and further applications of them. The derived Lie symmetries are used to construct exact solutions of special forms of these equations via the classical Lie method. Nonclassical symmetries of the wave equations are discussed.
  • Article Text

  • [1] Ames W F 1972 Nonlinear Partial DifferentialEquations in Engineering (New York: Academic)
    [2] Ames W F, Adams E and Lohner R J 1981 Int. J.Non-Linear Mech. 16 439
    [3] Bluman G and Cheviakov A F 2007 J. Math. Anal. Appl. 333 93
    [4] Bluman G W and Kumei S 1989 Symmetries andDifferential Equations (New York: Springer)
    [5] Bluman G, Temuerchaolu and Sahadevan R 2005 J. Math.Phys. 46 023505
    [6] Chikwendu S C 1981 Int. J. Non-Linear Mech. 16117
    [7] Donato A 1987 Int. J. Non-Linear Mech. 22 307
    [8] Gandarias M L, Torrisi M and Valenti A 2004 Int. J.Non-Linear Mech. 39 389
    [9] Huang D J and Ivanova N M 2007 J. Math. Phys 48 073507 (23 pages)
    [10] Ibragimov N H 1994 Lie Group Analysis ofDifferential Equations-Symmetries, Exact Solutions and ConservationLaws (Boca Raton, FL: CRC) vol 1
    [11] Ibragimov N H, Torrisi M and Valenti A 1991 J. Math.Phys. 32 2988
    [12] Kingston J G and Sophocleous C 1998 J. Phys. A:Math. Gen. 31 1597
    [13] Lahno V, Zhdanov R and Magda O 2006 Acta Appl.Math. 91 253
    [14] Lie S 1881 On Integration of a Class of LinearPartial Differential Equations by Means of Definite Integrals (CRCHandbook of Lie Group Analysis of Differential Equations) vol 2 pp473 (translation by Ibragimov N H of Arch. for Math., Bd. VI, Heft3, 328--368, Kristiania)
    [15] Meleshko S V 1994 J. Appl. Math. Mech. 58 629
    [16] Olver P J 1986 Application of Lie Groups toDifferential Equations (New York: Springer)
    [17] Oron A and Rosenau P 1986 Phys. Lett. A 118172
    [18] Ovsiannikov L V 1982 Group Analysis of DifferentialEquations (New York: Academic)
    [19] Patera J and Winternitz P 1977 J. Math. Phys. 18 1449
    [20] Popovych R O and Ivanova N M 2004 J. Phys. A: Math.Gen. 37 7547
    [21] Pucci E 1987 Riv. Mat. Univ. Parma 12N4 71
    [22] Pucci E and Salvatori M C 1986 Int. J. Non-LinearMech. 21 147
    [23] Torrisi M and Valenti A 1985 Int. J. Non-LinearMech. 20 135
    [24] Vaneeva O O, Johnpillai A G, Popovych R O and SophocleousC 2008 Appl. Math. Lett. 21 248
    [25] Zhdanov R Z and Lahno V I 1998 Physica D: NonlinearPhenomena 122 178
  • Related Articles

    [1]SONG Zhao-Hui, DING Qi, MEI Jian-Qin, ZHANG Hong-Qing. New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrödinger Equation with an External Potential [J]. Chin. Phys. Lett., 2010, 27(1): 010201. doi: 10.1088/0256-307X/27/1/010201
    [2]A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method [J]. Chin. Phys. Lett., 2008, 25(2): 589-592.
    [3]YE Ling-Ya, LV Yi-Neng, ZHANG Yi, JIN Hui-Ping. Grammian Solutions to a Variable-Coefficient KP Equation [J]. Chin. Phys. Lett., 2008, 25(2): 357-358.
    [4]Seripah Awang Kechil, Ishak Hashim, Sim Siaw Jiet. Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations [J]. Chin. Phys. Lett., 2007, 24(7): 1981-1984.
    [5]DENG Shu-Fang. Exact Solutions for a Nonisospectral and Variable-Coefficient Kadomtsev--Petviashvili Equation [J]. Chin. Phys. Lett., 2006, 23(7): 1662-1665.
    [6]QU Chang-Zheng, ZHANG Shun-Li. Group Foliation Method and Functional Separation of Variables to Nonlinear Diffusion Equations [J]. Chin. Phys. Lett., 2005, 22(7): 1563-1566.
    [7]LIU Yin-Ping, LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations [J]. Chin. Phys. Lett., 2003, 20(3): 317-320.
    [8]ZHANG Shun-Li, LOU Sen-Yue, QU Chang-Zheng. Variable Separation and Exact Solutions to Generalized Nonlinear Diffusion Equations [J]. Chin. Phys. Lett., 2002, 19(12): 1741-1744.
    [9]GUO Boling, PAN Xiude. N SOLITON SOLUTION FOR A CLASS OF THE SYSTEM OF LS NONLINEAR WAVE INTERACTION [J]. Chin. Phys. Lett., 1990, 7(6): 241-244.
    [10]DING E-jiang, HUANG Zu-qia. ON A CLASS OF EXACT SOLUTIONS OF THE BOLTZMANN EQUATION [J]. Chin. Phys. Lett., 1985, 2(2): 55-58.

Catalog

    Article views (1) PDF downloads (872) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return