Reactive Coupling Effects on Amplitude Death of Coupled Limit-Cycle Systems

  • Received Date: November 13, 2008
  • Published Date: February 28, 2009
  • Amplitude death in coupled limit-cycle systems induced by the reactive coupling is studied. The presence of reactive coupling parameter changes the amplitude death process of the system, and increases the critical coupling strength for the emergence of amplitude death. When the systems are in the state of complete or partial amplitude death, increasing the reactive coupling will increase the number of partial synchronization groups, implying the increase of disorder of the system. Increasing the reactive coupling makes the elimination of the amplitude death of the systems harder.
  • Article Text

  • [1] Bonilla L L and Acebron J A 2005 Rev. Mod. Phys. 71 137
    [2] Bar-Eli Z 1985 Physica D 14 242
    [3] Ermentrout G B 1990 Physica D 41 219
    [4] Matthews P C and Strogatz S H 1990 Phys. Rev. Lett. 65 1701
    [5] Matthews P C and Strogatz S H 1991 Physica D 52 293
    [6] Aronson D G,Ermentrout G B and Koppel N 1990 PhysicaD 41 403
    [7] Ramana D V,Sen A and Johnston G L 1998 Phys. Rev.Lett. 80 5109
    [8] Yamaguchi Y and Shiimizu H 1984 Physica D 11212
    [9] Cross M C and Rogers J L 2004 Phys. Rev. Lett. 93 224101
    [10] Cross M C and Rogers J L 2006 Phys. Rev. E 73036205
    [11] Yang J Z 2007 Phys. Rev. E 76 016204
    [12] Zheng Z G 2001 Chin. Phys. 10 0703
  • Related Articles

    [1]Abbagari Souleymanou, Victor K. Kuetche, Thomas B. Bouetou, Timoleon C. Kofane. Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System [J]. Chin. Phys. Lett., 2011, 28(12): 120501. doi: 10.1088/0256-307X/28/12/120501
    [2]XIA Li-Li. Poisson Theory and Inverse Problem in a Controllable Mechanical System [J]. Chin. Phys. Lett., 2011, 28(12): 120202. doi: 10.1088/0256-307X/28/12/120202
    [3]Souleymanou Abbagari, Bouetou Bouetou Thomas, Kuetche Kamgang Victor, Mouna Ferdinand, Timoleon Crepin Kofane. Prolongation Structure Analysis of a Coupled Dispersionless System [J]. Chin. Phys. Lett., 2011, 28(2): 020204. doi: 10.1088/0256-307X/28/2/020204
    [4]YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem? [J]. Chin. Phys. Lett., 2010, 27(12): 124701. doi: 10.1088/0256-307X/27/12/124701
    [5]ZHANG Gang, ZHANG Wei, LIU Zeng-Rong. Synchronization of Coupled Nonidentical Dynamical Systems [J]. Chin. Phys. Lett., 2010, 27(3): 030504. doi: 10.1088/0256-307X/27/3/030504
    [6]Kuetche Kamgang Victor, Gambo Betchewe, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Miscellaneous Rotating Solitary Waves to a Coupled Dispersionless System [J]. Chin. Phys. Lett., 2009, 26(9): 090505. doi: 10.1088/0256-307X/26/9/090505
    [7]Gambo Betchewe, Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Dynamical System Approach to a Coupled Dispersionless System: Localized and Periodic Traveling Waves [J]. Chin. Phys. Lett., 2009, 26(6): 060503. doi: 10.1088/0256-307X/26/6/060503
    [8]LI Jing, CHEN Zhi-De. Squeezing Effect of a Nanomechanical Resonator Coupled to a Two-Level System: an Equilibrium Approach [J]. Chin. Phys. Lett., 2009, 26(3): 038501. doi: 10.1088/0256-307X/26/3/038501
    [9]SUN Hui-Ying, HUANG Xiao-Li, YI Xue Xi. Dynamical Evolution and Entanglement in a Nonlinear Interacting System [J]. Chin. Phys. Lett., 2009, 26(2): 020305. doi: 10.1088/0256-307X/26/2/020305
    [10]HUANG Ling. Rational Solutions in a Coupled Burgers System [J]. Chin. Phys. Lett., 2006, 23(1): 4-6.

Catalog

    Article views (1) PDF downloads (877) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return