Improved Quantum Evolutionary Computation Based on Particle SwarmOptimization and Two-Crossovers

  • Received Date: August 24, 2009
  • Published Date: November 30, 2009
  • A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.
  • Article Text

  • [1] Kennedy J and Eberhart R 1995 IEEE InternationalConference on Neural Networks (Perth, Western Australia 27November1 December) 4 1942
    [2] Holland J 1975 Adaptation in Natural and ArtificialSystems (Michigan: The University of Michigan Press) p 86
    [3] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, VedralV, Aspelmeyer M and Zeilinger A 2005 Nature 434 169
    [4] Yang S Y, Liu F, and Jiao L C 2001 Acta Electron. Sin. 29 1873 (in Chinese)
    [5] Zhang W F, Shi Z K, and Luo Z Y 2008 International JointConference on Neural Networks (Hongkong 16 June 2008) p 1510
    [6] Tayarayi M H N and Akbarzadeh M R T 2007 IEEE Congress onEvolutionary Computation (Singapore 2528 September 2007) p 2670
    [7] Xiao J, Yan Y P, Lin Y, Yuan L and Zhang J 2008 IEEECongress on Evolutionary Computation (Hongkong 16 June 2008) p1513
    [8] Wei M, Li Y X, Jiang D Z, He Y F, Huang X Y and Xu X 2008 IEEE Congress on Evolutionary Computation (Hongkong 16 June 2008)p 1722
    [9] Al-Rabadi A N 2009 Int. J. Intelligent Computing andCybernetics 2 52
    [10] Xing Z H, Duan H B and Xu C F 2009 Lecture Notes inComputer Science 5551 735
    [11] Wang A M 2002 Chin. Phys. Lett. 19 620
  • Related Articles

    [1]LI Zhi-Hua, WANG Bing-Hong, LIU Run-Ran, YANG Han-Xin. Evolutionary Prisoner's Dilemma Game Based on Division of Work [J]. Chin. Phys. Lett., 2009, 26(10): 108701. doi: 10.1088/0256-307X/26/10/108701
    [2]LI Yu-Jian, WANG Bing-Hong, YANG Han-Xin, LING Xiang, CHEN Xiao-Jie, JIANG Rui. Evolutionary Prisoner's Dilemma Game Based on Pursuing Higher Average Payoff [J]. Chin. Phys. Lett., 2009, 26(1): 018701. doi: 10.1088/0256-307X/26/1/018701
    [3]LI Ji, WANG Bing-Hong, WANG Wen-Xu, ZHOU Tao. Network Entropy Based on Topology Configuration and Its Computation to Random Networks [J]. Chin. Phys. Lett., 2008, 25(11): 4177-4180.
    [4]LI Chun-Zhi, SONG Yuan-Hong, WANG You-Nian. Interactions of a Charged Particle with Parallel Two-Dimensional Quantum Electron Gases [J]. Chin. Phys. Lett., 2008, 25(8): 2981-2984.
    [5]ZHANG Jian-Song, XU Jing-Bo. One Atom in an Optical Cavity: Entanglement and Applications to Quantum Computation [J]. Chin. Phys. Lett., 2008, 25(1): 24-26.
    [6]LIU Wei-Tao, LIANG Lin-Mei, LI Cheng-Zu, YUAN Jian-Min. Quantum Secret Sharing with Two-Particle Entangled States [J]. Chin. Phys. Lett., 2006, 23(12): 3148-3151.
    [7]YAO Xi-Wei, XUE Fei, PANG Wen-Min, DU Jiang-Feng, ZHOU Xian-Yi, HAN Rong-Dian. Liquid Nuclear Magnetic Resonance Implementation of Quantum Computation in Subspace [J]. Chin. Phys. Lett., 2006, 23(8): 1996-1999.
    [8]GAO Ting, YAN Feng-Li, WANG Zhi-Xi. Probabilistic Cloning and Quantum Computation [J]. Chin. Phys. Lett., 2004, 21(6): 995-998.
    [9]FENG Mang, ZHU Xi-Wen, GAO Ke-Lin, SHI Lei. Quantum Computation by Pairing Trapped Ultracold Ions [J]. Chin. Phys. Lett., 2001, 18(6): 718-720.
    [10]FENG Mang, ZHU Xi-Wen, FANG Xi-Ming, YAN Min, SHI Lei. Teleportation of Two Quantum States via the Quantum Computation [J]. Chin. Phys. Lett., 2000, 17(3): 168-170.

Catalog

    Article views (2) PDF downloads (568) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return