ULF Waves Associated with Solar Wind Deceleration in the Earth's Foreshock

  • Received Date: July 19, 2009
  • Published Date: October 31, 2009
  • Characteristics of ULF waves associated with the solar wind deceleration in the Earth's foreshock on 6-7 April 2003 is studied using the wave telescope technique. In the satellite frame, the ULF waves are the left-handed polarized and quasi anti-parallel propagating mode, with a power peak at about 18.63mHz. The wave vector in the GSE coordinates is estimated to be k = (-4.29, 2.28, 1.21)×10-4km-1. In the solar wind frame, the frequency of waves becomes -9.39mHz after the Doppler shift correction. The propagation direction of the waves is thus reversed and correspondingly the polarization of the waves becomes right-handed. The above-mentioned characteristics of the ULF waves in the solar wind frame indicate that the ULF waves associated with the solar wind deceleration are the Alfven-whistler waves, which have been frequently reported in both the observations and computer simulations.
  • Article Text

  • [1] Formisano V and Amata E 1976 J. Geophys. Res. 81 3907
    [2] Bame S J et al 1980 J. Geophys. Res. 85 2981
    [3] Bonifazi C et al 1980 J. Geophys. Res. 85 6031
    [4] Zhang~T L et al 1995 Adv. Space Res. 10 137
    [5] Auer R D et al 1976 J. Geophys. Res. 81 2030
    [6] Diodato L and Moreno G 1977 J. Geophys. Res. 82 3615
    [7] Cao J B et al 2009 J. Geophys. Res. 114 A02207
    [8] Fu H S et al 2009 Chin. J. Geophys. 52 895
    [9] Le G and Russell C T 1990 Geophys. Res. Lett. 17 905
    [10] Le G et al 1992 J. Geophys. Res. 97 2917
    [11] Greenstadt E W et al 1995 Adv. Space Res. 1571
    [12] Blanco-Cano X et al 1995 Adv. Space Res. 1597
    [13] Blanco-Cano X et al 1997 Ann. Geophys. 15 273
    [14] Blanco-Cano X et al 1999 J. Geophys. Res. 1044643
    [15] Blanco-Cano X at al 2006 J. Geophys. Res. 111A10205
    [16] Mazelle C et al 1997 Adv. Space Res. 20 267
    [17] Pin\c{con J L and Lefeuvre F 1991 J. Geophys. Res. 96 1789
    [18] Motschmann U et al 1996 J. Geophys. Res. 1014961
    [19] Glassmeier K H et al 2001 Ann. Geophys. 191439
    [20] Glassmeier K H 2003 Ann. Geophys. 21 1071
    [21] Narita Y et al 2003 Geophys. Res. Lett. 301710
    [22] Narita Y et al 2005 J. Geophys. Res. 110A12215
    [23] Balogh A et al 2001 Ann. Geophys. 19 1207
    [24] R\`{eme H et al 2001 Ann. Geophys. 19 1303
    [25] Russell C T 1988 Adv. Space Res. 8 147
    [26] Wang~X~Y and Lin Y 2003 Physics of Plasmas 103528
    [27] Narita Y et al 2007 Nonlin. Processes Geophys. 14 361
    [28] Yoon P H 2007 Physics of Plasmas 14 102302
    [29] Vogt J et al 2008 Ann. Geophys. 26 1699
    [30] Motschmann U et al 1997 Ann. Geophys. 15 603
    [31] Cao J B et al 1998 J. Geophys. Res. 103 2055
    [32] Cao J B et al 1998 Geophys. Res. Lett. 251499
    [33] Cao J B et al 2000 Phys. Plasmas 7 696
    [34] Parks G K. et al 2006 Phys. Plasmas 13 050701
    [35] Coates A J et al 1993 J. Geophys. Res. 9820985
  • Related Articles

    [1]LI Xian-Feng, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model [J]. Chin. Phys. Lett., 2012, 29(1): 010201. doi: 10.1088/0256-307X/29/1/010201
    [2]JI Ying, BI Qin-Sheng. SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation [J]. Chin. Phys. Lett., 2011, 28(9): 090201. doi: 10.1088/0256-307X/28/9/090201
    [3]YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. Bifurcation of a Saddle-Node Limit Cycle with Homoclinic Orbits Satisfying the Small Lobe Condition in a Leech Neuron Model [J]. Chin. Phys. Lett., 2009, 26(8): 080501. doi: 10.1088/0256-307X/26/8/080501
    [4]MA Jun, WANG Qing-Yun, JIN Wu-Yin, XIA Ya-Feng. Control Chaos in Hindmarsh--Rose Neuron by Using Intermittent Feedback with One Variable [J]. Chin. Phys. Lett., 2008, 25(10): 3582-3585.
    [5]SHI Xia, LU Qi-Shao. Phase Synchronization in Electrically Coupled Different Neuronal Pacemakers with the Chay Model [J]. Chin. Phys. Lett., 2005, 22(3): 547-550.
    [6]WU Cai-yun, QU Shi-xian, WU Shun-guang, HE Da-ren. Scaling Properties of the Period-Adding Sequences in a Multiple Devil’s Staircase [J]. Chin. Phys. Lett., 1998, 15(4): 246-248.
    [7]YANG Shi-ping, TIAN Gang, XU Shu-shan. Controlling Chaos and Bifurcation by a Delayed Nonlinear Feedback [J]. Chin. Phys. Lett., 1996, 13(5): 333-336.
    [8]MIAO Guoqing, NI Wansun, TAO Qintian, ZHANG Zhiliang, WEI Rongjue. BIFURCATION, CHAOS AND HYSTERESIS IN ELECTRODYNAMIC CONE LOUDSPEAKER [J]. Chin. Phys. Lett., 1990, 7(2): 68-71.
    [9]NI Wansun. THE PERIOD-ADDING PHENOMENA IN A TWO-DIMENSIONAL MAPPING WITH THREE PARAMETERS [J]. Chin. Phys. Lett., 1986, 3(12): 573-576.
    [10]WEI Rongjue, TAO Qintian, NI Wansun. BIFURCATION AND CHAOS OF DIRECT RADIATION -LOUDSPEAKER [J]. Chin. Phys. Lett., 1986, 3(10): 469-472.

Catalog

    Article views (0) PDF downloads (777) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return