Influence of Post-Annealing Temperature on Properties of Ta-Doped ZnO Transparent Conductive Films
-
Abstract
Ta-doped ZnO transparent conductive films are deposited on glass substrates by rf sputtering at 300°C. The influence of the post-annealing temperature on the structural, morphologic, electrical, and optical properties of the films is investigated by x-ray diffraction, Hall measurement, and optical transmission spectroscopy. The lowest resistivity of 3.5×10-4Ω・cm is obtained from the film annealed at 400°C in N2. The average optical transmittance of the films is over 90%. The optical bandgap is found to decrease with the increase of the annealing temperature. -
References
[1] Hsu Y F, Xi Y Y, Yip C T, Djuri\v{si\'{c A B and Chan WK 2008 J. Appl. Phys. 103 083114 [2] Zhu L, Fan Y Q, Zhao M C, Wu M, Zhang J Y, Xu C X and CuiY P 2009 Chin. Phys. Lett. 26 018401 [3] Sundqvist P A, Zhao Q X and Willander M 2003 Phys.Rev. B 68 155334 [4] Saxena V, Aswal D K, Kaur M, Koiry S P, Gupta S K, YakhmiJ V, Kshirsagar R J and Deshpande S K 2007 Appl. Phys. Lett. 90 043516 [5] Cao Q, Deng J X, Liu G L, Chen Y X, Yan S S and Mei L M2007 Chin. Phys. Lett. 24 2951 Wang M, Lee K E, Hahn S H, Kim E J, Kim S, Chung J S, Shin EW and Park C 2007 Mater. Lett. 61 1118 [6] Park S M, Ikegami T and Ebihara K 2006 Thin SolidFilms 513 90 [7] Yan J F, Zhao L L and Zhang Z Y 2008 Chin. Phys.Lett. 25 2253 [8] Zhao G L, Lin B X, Hong L, Meng X D and Fu Z X 2004 Chin. Phys. Lett. 21 1381 [9] Agashe C, Kluth O, Hupkes U, Zastrow U and Rech B 2007 J. Appl. Phys. 101 083705 [10] Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G,Svensson B G and Yakimova R 2007 Superlattice Microst. 42 379 [11] Lee J H and Song J T 2008 Thin Solid Films 516 1377 [12] Horwat D and Billard A 2007 Thin Solid Films 515 5444 [13] Hong R J, Jiang X, Szyszka B, Sitteinger V and Pflug A2002 Appl. Surf. Sci 207 341 [14] Yu X H, Ma J, Ji F, Wang Y F, Zhang X J, Cheng C F and MaH L 2005 Appl. Surf. Sci. 239 222 [15] Kim J H, Ahn B D, Kim C H, Jeon K A, Kang H S and Lee SY. 2008 Thin Solid Films 516 1330 [16] Gomeza H, Maldonadoa A, Olvera M L and Acosta D R 2005 Sol. Energy Mater. Sol. C 87 107 [17] Gon\c{calves G, Elangovan E, Barquinha P, Pereira L,Martins R and Fortunato E 2007 Thin Solid Films 515 8562 [18] Jeong S H and Boo J H 2004 Thin Solid Films 447 105 [19] Xing G Z, Yao B, Cong C X, Yang T, Xie Y P, Li B H andShen D Z 2008 J. Alloys Compd. 457 36 [20] Burstein E 1954 Phys. Rev. 93 632 [21] Lee H W, Lau S P, Wang Y G, Tse K Y, Hng H H and Tay B K2004 J. Cryst. Growth 268 596 -
Related Articles
[1] X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models [J]. Chin. Phys. Lett., 2022, 39(6): 067502. doi: 10.1088/0256-307X/39/6/067502 [2] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation [J]. Chin. Phys. Lett., 2009, 26(6): 060501. doi: 10.1088/0256-307X/26/6/060501 [3] LIU Zheng-Feng, WANG Xiao-Hong. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique [J]. Chin. Phys. Lett., 2008, 25(2): 604-607. [4] LIN Ming-Xi, QI Sheng-Wen, LIU Yu-Liang. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System [J]. Chin. Phys. Lett., 2006, 23(11): 3076-3079. [5] WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model [J]. Chin. Phys. Lett., 2006, 23(2): 305-308. [6] SONG Bo, WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model [J]. Chin. Phys. Lett., 2003, 20(2): 287-289. [7] SUN Gang, CHU Qian-Jin. Phase Diagram of the 2-Dimensional Ising Model with DipolarInteraction [J]. Chin. Phys. Lett., 2001, 18(4): 491-494. [8] YAN Xiao-hong, ZHANG Li-de, DUAN Zhu-ping, YANG Qi-bin. Renormalization Group Approach on Nanostructured Systems [J]. Chin. Phys. Lett., 1997, 14(4): 291-294. [9] YAN Xiaohong, YOU Jianqiang, YAN Jiaren, ZHONG Jianxin. Renormalization Group on the Aperiodic Hamiltonian [J]. Chin. Phys. Lett., 1992, 9(11): 623-625. [10] TAN Weichao, YANG Chuliang. RENORMALIZATION GROUP METHOD FOR CALCULATING THE LOCALIZATION LENGTH OF COUPLED DISORDERED CHAINS [J]. Chin. Phys. Lett., 1989, 6(5): 213-216.