$z$ | $H(z)$ (km$\cdot$s$^{-1}\cdot$Mpc$^{-1}$) | $\sigma$ (km$\cdot$s$^{-1}\cdot$Mpc$^{-1}$) | Refs. |
---|---|---|---|
0.09 | 69 | 12 | |
0.17 | 83 | 8 | |
0.27 | 77 | 14 | |
0.4 | 95 | 17 | |
0.9 | 117 | 23 | |
1.3 | 168 | 17 | |
1.43 | 177 | 18 | |
1.53 | 140 | 14 | |
1.75 | 202 | 40 | |
0.48 | 97 | 62 | |
0.88 | 90 | 40 | |
0.1791 | 75 | 4 | |
0.1993 | 75 | 5 | |
0.3519 | 83 | 14 | |
0.5929 | 104 | 13 | |
0.6797 | 92 | 8 | |
0.7812 | 105 | 12 | |
0.8754 | 125 | 17 | |
1.037 | 154 | 20 | |
0.07 | 69 | 19.6 | |
0.12 | 68.2 | 26.2 | |
0.2 | 72.9 | 29.6 | |
0.28 | 88.8 | 36.6 | |
1.363 | 160 | 33.6 | |
1.965 | 186.5 | 50.4 | |
0.3802 | 83 | 13.5 | |
0.4004 | 77 | 10.2 | |
0.4247 | 87.1 | 11.2 | |
0.4497 | 92.8 | 12.9 | |
0.4783 | 80.9 | 9 | |
0.47 | 89 | 49.6 | |
0.75 | 98.8 | 33.6 | |
0.8 | 113.1 | 25.22 | |
1.26 | 135 | 65 | |
Name | $z$ | (pc$\cdot$cm$^{-3})$ | (pc$\cdot$cm$^{-3})$ | Refs. |
---|---|---|---|---|
0.19273 | 557 | 188.0 | |
|
FRB 20180301 | 0.3304 | 536 | 152.0 | |
0.0337 | 348.76 | 200.0 | |
|
0.3214 | 361.42 | 40.5 | |
|
0.4755 | 589.27 | 102.0 | |
|
0.291 | 363.6 | 57.3 | |
|
0.66 | 760.8 | 37.0 | |
|
0.1178 | 338.7 | 37.2 | |
|
0.378 | 321.4 | 57.83 | |
|
0.6 | 959.2 | 83.5 | |
|
0.522 | 593.1 | 56.4 | |
|
0.2365 | 504 | 38.0 | |
|
0.234 | 506.92 | 44.7 | |
|
0.2432 | 297.5 | 33.0 | |
|
0.16 | 380.1 | 27.0 | |
|
0.3688 | 577.8 | 36.0 | |
|
0.098 | 413.52 | 123.2 | |
|
0.2145 | 730 | 34.4 | |
|
0.27970 | 384.8 | 42 | |
|
0.12927 | 251.9 | 121.2 | |
|
0.0469 | 234.83 | 42.5 | |
|
0.0715 | 206 | 27.1 | |
|
0.043040 | 262.38 | 79.3 | |
|
0.28123 | 499.27 | 135.7 | |
|
0.477958 | 462.24 | 45.4 | |
|
0.622000 | 623.25 | 37.6 | |
|
0.30039 | 396.97 | 89.1 | |
|
0.089400 | 269.53 | 55.2 | |
|
1.016 | 1457.624 | 31 | |
|
0.241397 | 651.24 | 79.7 | |
|
0.158239 | 314.99 | 40.3 | |
|
0.284669 | 441.08 | 54.4 | |
Priors of | ${\varOmega_{\rm b}}h_{0}^2$ | $F$ | (pc$\cdot$cm$^{-3}$) | $\mu$ | $\sigma_{\rm{host}}$ | $m_{\gamma}$ (10$^{-51}$ kg) |
---|---|---|---|---|---|---|
Gaussian prior | $0.030_{-0.007}^{+0.006}$ | $\geq 0.449$ | $39_{-10}^{+10}$ | $4.02_{-0.29}^{+0.46}$ | $1.01_{-0.37}^{+0.22}$ | $\leq 3.5\, (\leq 6.5)$ |
Flat prior | $0.031_{-0.006}^{+0.006}$ | $\geq 0.451$ | $\leq 32$ | $4.07_{-0.30}^{+0.48}$ | $0.99_{-0.37}^{+0.21}$ | $\leq 3.8\, (\leq 7.2)$ |
[1] | de Broglie L 1922 J. Phys. Radium 3 422 | Rayonnement noir et quanta de lumière
[2] | Proca A 1936 J. Phys. Radium 7 347 | Sur la théorie ondulatoire des électrons positifs et négatifs
[3] | Kouwn S, Oh P, and Park C G 2016 Phys. Rev. D 93 083012 | Massive photon and dark energy
[4] | Spallicci A D A M, Helayël-Neto J A, López-Corredoira M, and Capozziello S 2021 Eur. Phys. J. C 81 4 | Cosmology and the massive photon frequency shift in the Standard-Model Extension
[5] | Williams E R, Faller J E, and Hill H A 1971 Phys. Rev. Lett. 26 721 | New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass
[6] | Lakes R 1998 Phys. Rev. Lett. 80 1826 | Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential
[7] | Luo J, Tu L C, Hu Z K, and Luan E J 2003 Phys. Rev. Lett. 90 081801 | New Experimental Limit on the Photon Rest Mass with a Rotating Torsion Balance
[8] | Lowenthal D D 1973 Phys. Rev. D 8 2349 | Limits on the Photon Mass
[9] | Chibisov G V 1976 Sov. Phys. Usp. 19 624 | Astrophysical upper limits on the photon rest mass
[10] | Ryutov D D 1997 Plasma Phys. Control. Fusion 39 A73 | The role of finite photon mass in magnetohydrodynamics of space plasmas
[11] | Ryutov D D 2007 Plasma Phys. Control. Fusion 49 B429 | Using plasma physics to weigh the photon
[12] | Liu L X and Shao C G 2012 Chin. Phys. Lett. 29 111401 | Re-estimatation of the Upper Limit on the Photon Mass with the Solar Wind Method
[13] | Retinò A, Spallicci A D A M, and Vaivads A 2016 Astropart. Phys. 82 49 | Solar wind test of the de Broglie-Proca massive photon with Cluster multi-spacecraft data
[14] | Jr Davis L, Goldhaber A S, and Nieto M M 1975 Phys. Rev. Lett. 35 1402 | Limit on the Photon Mass Deduced from Pioneer-10 Observations of Jupiter's Magnetic Field
[15] | Yang Y P and Zhang B 2017 Astrophys. J. 842 23 | Tight Constraint on Photon Mass from Pulsar Spindown
[16] | Tu L C, Ye H L, and Luo J 2005 Chin. Phys. Lett. 22 3057 | Variations of the Speed of Light with Frequency and Implied Photon Mass
[17] | Tu L C, Luo J, and Gillies G T 2005 Rep. Prog. Phys. 68 77 | The mass of the photon
[18] | Wu X F et al. 2016 Astrophys. J. Lett. 822 L15 | CONSTRAINTS ON THE PHOTON MASS WITH FAST RADIO BURSTS
[19] | Bonetti L et al. 2016 Phys. Lett. B 757 548 | Photon mass limits from fast radio bursts
[20] | Bonetti L et al. 2017 Phys. Lett. B 768 326 | FRB 121102 casts new light on the photon mass
[21] | Shao L and Zhang B 2017 Phys. Rev. D 95 123010 | Bayesian framework to constrain the photon mass with a catalog of fast radio bursts
[22] | Xing N et al. 2019 Astrophys. J. Lett. 882 L13 | Limits on the Weak Equivalence Principle and Photon Mass with FRB 121102 Subpulses
[23] | Wei J J and Wu X F 2020 Res. Astron. Astrophys. 20 206 | Combined limit on the photon mass with nine localized fast radio bursts
[24] | Wang H, Miao X, and Shao L 2021 Phys. Lett. B 820 136596 | Bounding the photon mass with cosmological propagation of fast radio bursts
[25] | Chang C M, Wei J J, Zhang S B, and Wu X F 2023 J. Cosmol. Astropart. Phys. 2023(01) 010 | Bounding the photon mass with the dedispersed pulses of the Crab pulsar and FRB 180916B
[26] | Lin H N, Tang L, and Zou R 2023 Mon. Not. R. Astron. Soc. 520 1324 | Revised constraints on the photon mass from well-localized fast radio bursts
[27] | Wang B, Wei J J, Wu X F, and López-Corredoira M 2023 J. Cosmol. Astropart. Phys. 2023(09) 025 | Revisiting constraints on the photon rest mass with cosmological fast radio bursts
[28] | Wang Y B, Zhou X, Kurban A, and Wang F Y 2024 Astrophys. J. 965 38 | Bounding the Photon Mass with Ultrawide Bandwidth Pulsar Timing Data and Dedispersed Pulses of Fast Radio Bursts
[29] | Lorimer D R and Kramer M 2012 Handbook of Pulsar Astronomy |
[30] | Zhang B 2023 Rev. Mod. Phys. 95 035005 | The physics of fast radio bursts
[31] | Wei J J and Wu X F 2021 Front. Phys. 16 44300 | Testing fundamental physics with astrophysical transients
[32] | Cordes J M and Lazio T J W 2002 arXiv:astro-ph/0207156 | NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations
[33] | Prochaska J X and Zheng Y 2019 Mon. Not. R. Astron. Soc. 485 648 | Probing Galactic Halos with Fast Radio Bursts
[34] | Keating L C and Pen U L 2020 Mon. Not. R. Astron. Soc. 496 L106 | Exploring the dispersion measure of the Milky Way halo
[35] | Wu Q, Zhang G Q, and Wang F Y 2022 Mon. Not. R. Astron. Soc. 515 L1 | An 8 per cent determination of the Hubble constant from localized fast radio bursts
[36] | Deng W and Zhang B 2014 Astrophys. J. Lett. 783 L35 | COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS
[37] | Fukugita M, Hogan C J, and Peebles P J E 1998 Astrophys. J. 503 518 | The Cosmic Baryon Budget
[38] | Miralda-Escudé J, Haehnelt M, and Rees M J 2000 Astrophys. J. 530 1 | Reionization of the Inhomogeneous Universe
[39] | Macquart J P et al. 2020 Nature 581 391 | A census of baryons in the Universe from localized fast radio bursts
[40] | McQuinn M 2014 Astrophys. J. Lett. 780 L33 | LOCATING THE “MISSING” BARYONS WITH EXTRAGALACTIC DISPERSION MEASURE ESTIMATES
[41] | Seikel M, Clarkson C, and Smith M 2012 J. Cosmol. Astropart. Phys. 2012(06) 036 | Reconstruction of dark energy and expansion dynamics using Gaussian processes
[42] | Wei J J and Wu X F 2017 Astrophys. J. 838 160 | An Improved Method to Measure the Cosmic Curvature
[43] | Wang G J et al. 2017 Astrophys. J. 847 45 | Model-independent Constraints on Cosmic Curvature and Opacity
[44] | Wang G J, Ma X J, Li S Y, and Xia J Q 2020 Astrophys. J. Suppl. Ser. 246 13 | Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with a Hubble Parameter and SNe Ia
[45] | Wasserman L et al. 2001 arXiv:astro-ph/0112050 | Non-Parametric Inference in Astrophysics
[46] | Ioffe S and Szegedy C 2015 arXiv:1502.03167 [cs.LG] | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
[47] | Clevert D A, Unterthiner T, and Hochreiter S 2015 arXiv:1511.07289 [cs.LG] | Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
[48] | Kingma D P and Ba J 2014 arXiv:1412.6980 [cs.LG] | Adam: A Method for Stochastic Optimization
[49] | Jimenez R, Verde L, Treu T, and Stern D 2003 Astrophys. J. 593 622 | Constraints on the Equation of State of Dark Energy and the Hubble Constant from Stellar Ages and the Cosmic Microwave Background
[50] | Simon J, Verde L, and Jimenez R 2005 Phys. Rev. D 71 123001 | Constraints on the redshift dependence of the dark energy potential
[51] | Stern D et al. 2010 J. Cosmol. Astropart. Phys. 2010(02) 008 | Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements
[52] | Moresco M et al. 2012 J. Cosmol. Astropart. Phys. 2012(08) 006 | Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers
[53] | Zhang C et al. 2014 Res. Astron. Astrophys. 14 1221 | Four new observational H ( z ) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven
[54] | Moresco M 2015 Mon. Not. R. Astron. Soc. 450 L16 | Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2
[55] | Moresco M et al. 2016 J. Cosmol. Astropart. Phys. 2016(05) 014 | A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration
[56] | Ratsimbazafy A L et al. 2017 Mon. Not. R. Astron. Soc. 467 3239 | Age-dating luminous red galaxies observed with the Southern African Large Telescope
[57] | Borghi N, Moresco M, and Cimatti A 2022 Astrophys. J. Lett. 928 L4 | Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ∼ 0.7
[58] | Jiao K, Borghi N, Moresco M, and Zhang T J 2023 Astrophys. J. Suppl. Ser. 265 48 | New Observational H(z) Data from Full-spectrum Fitting of Cosmic Chronometers in the LEGA-C Survey
[59] | Tomasetti E et al. 2023 Astron. Astrophys. 679 A96 | A new measurement of the expansion history of the Universe at z = 1.26 with cosmic chronometers in VANDELS
[60] | Gaztañaga E, Cabré A, and Hui L 2009 Mon. Not. R. Astron. Soc. 399 1663 | Clustering of luminous red galaxies - IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H ( z )
[61] | Blake C et al. 2012 Mon. Not. R. Astron. Soc. 425 405 | The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1
[62] | Samushia L et al. 2013 Mon. Not. R. Astron. Soc. 429 1514 | The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from Λ and general relativity using anisotropic clustering of galaxies
[63] | Jimenez R and Loeb A 2002 Astrophys. J. 573 37 | Constraining Cosmological Parameters Based on Relative Galaxy Ages
[64] | Bentum M J, Bonetti L, and Spallicci A D A M 2017 Adv. Space Res. 59 736 | Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies
[65] | Planck Collaboration, Aghanim N et al. 2020 Astron. Astrophys. 641 A6 | Planck 2018 results
[66] | Chatterjee S et al. 2017 Nature 541 58 | A direct localization of a fast radio burst and its host
[67] | Bhandari S et al. 2022 Astron. J. 163 69 | Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe
[68] | Marcote B et al. 2020 Nature 577 190 | A repeating fast radio burst source localized to a nearby spiral galaxy
[69] | Bannister K W et al. 2019 Science 365 565 | A single fast radio burst localized to a massive galaxy at cosmological distance
[70] | Prochaska J X et al. 2019 Science 366 231 | The low density and magnetization of a massive galaxy halo exposed by a fast radio burst
[71] | Bhandari S et al. 2020 Astrophys. J. Lett. 895 L37 | The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder
[72] | Ravi V et al. 2019 Nature 572 352 | A fast radio burst localized to a massive galaxy
[73] | Chittidi J S et al. 2021 Astrophys. J. 922 173 | Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy
[74] | Heintz K E et al. 2020 Astrophys. J. 903 152 | Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors
[75] | Law C J et al. 2020 Astrophys. J. 899 161 | A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array
[76] | Ravi V et al. 2022 Mon. Not. R. Astron. Soc. 513 982 | The host galaxy and persistent radio counterpart of FRB 20201124A
[77] | James C W et al. 2022 Mon. Not. R. Astron. Soc. 516 4862 | A measurement of Hubble’s Constant using Fast Radio Bursts
[78] | Law C J et al. 2023 arXiv:2307.03344 [astro-ph.HE] | Deep Synoptic Array Science: First FRB and Host Galaxy Catalog
[79] | Ryder S D et al. 2023 Science 382 294 | A luminous fast radio burst that probes the Universe at redshift 1
[80] | Foreman-Mackey D, Hogg D W, Lang D, and Goodman J 2013 Publ. Astron. Soc. Pac. 125 306 | emcee : The MCMC Hammer